IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.03602.html
   My bibliography  Save this paper

When Should we Expect Non-Decreasing Returns from Data in Prediction Tasks?

Author

Listed:
  • Maximilian Schaefer

Abstract

This article studies the change in the prediction accuracy of a response variable when the number of predictors increases, and all variables follow a multivariate normal distribution. Assuming that the correlations between variables are independently drawn, I show that adding variables leads to globally increasing returns to scale when the mean of the correlation distribution is zero. The speed of learning depends positively on the variance of the correlation distribution. I use simulations to study the more complex case of correlation distributions with a non-zero mean and find a pattern of decreasing returns followed by increasing returns to scale - as long as the variance of correlations is not degenerate, in which case globally decreasing returns emerge. I train a collaborative filtering algorithm using the MovieLens 1M dataset to analyze returns from adding variables in a more realistic setting and find globally increasing returns to scale across $2,000$ variables. The results suggest significant scale advantages from additional variables in prediction tasks.

Suggested Citation

  • Maximilian Schaefer, 2025. "When Should we Expect Non-Decreasing Returns from Data in Prediction Tasks?," Papers 2503.03602, arXiv.org.
  • Handle: RePEc:arx:papers:2503.03602
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.03602
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.03602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.