IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1867.html
   My bibliography  Save this paper

Way Off: The Effect of Minimum Distance Regulation on the Deployment of Wind Power

Author

Listed:
  • Jan Stede
  • Nils May

Abstract

Several countries and regions have introduced mandatory minimum distances of wind turbines to nearby residential areas, in order to increase public acceptance of wind power. Germany’s largest federal state Bavaria introduced such separation distances of ten times the height of new wind turbines in 2014. Here, we provide a novel monthly district-level dataset of construction permits for wind turbines constructed in Germany between 2010 and 2018. We use this dataset to evaluate the causal effect of introducing the Bavarian minimum distance regulation on the issuance of construction permits for wind turbines. We find that permits decreased by up to 90 percent. This decrease is in the same order of magnitude as the reduction of land area available for wind turbines. The results are in line with findings indicating that minimum distances do not increase the public acceptance of wind power, but harm the expansion of onshore wind power.

Suggested Citation

  • Jan Stede & Nils May, 2020. "Way Off: The Effect of Minimum Distance Regulation on the Deployment of Wind Power," Discussion Papers of DIW Berlin 1867, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1867
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.787531.de/dp1867.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florian Egli & Bjarne Steffen & Tobias S. Schmidt, 2018. "A dynamic analysis of financing conditions for renewable energy technologies," Nature Energy, Nature, vol. 3(12), pages 1084-1092, December.
    2. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    3. James G. MacKinnon & Matthew D. Webb, 2018. "The wild bootstrap for few (treated) clusters," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135, June.
    4. Hoen, Ben & Firestone, Jeremy & Rand, Joseph & Elliot, Debi & Hübner, Gundula & Pohl, Johannes & Wiser, Ryan & Lantz, Eric & Haac, T. Ryan & Kaliski, Ken, 2019. "Attitudes of U.S. Wind Turbine Neighbors: Analysis of a Nationwide Survey," Energy Policy, Elsevier, vol. 134(C).
    5. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    6. Ladenburg, Jacob & Dahlgaard, Jens-Olav, 2012. "Attitudes, threshold levels and cumulative effects of the daily wind-turbine encounters," Applied Energy, Elsevier, vol. 98(C), pages 40-46.
    7. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    8. James G. MacKinnon & Matthew D. Webb, 2019. "Wild Bootstrap Randomization Inference for Few Treated Clusters," Advances in Econometrics, in: The Econometrics of Complex Survey Data, volume 39, pages 61-85, Emerald Group Publishing Limited.
    9. Masurowski, Frank & Drechsler, Martin & Frank, Karin, 2016. "A spatially explicit assessment of the wind energy potential in response to an increased distance between wind turbines and settlements in Germany," Energy Policy, Elsevier, vol. 97(C), pages 343-350.
    10. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    11. Nils May & Øivind A. Nilsen, 2019. "The Local Economic Impact of Wind Power Deployment," FinanzArchiv: Public Finance Analysis, Mohr Siebeck, Tübingen, vol. 75(1), pages 56-92.
    12. Wolsink, Maarten, 2012. "Undesired reinforcement of harmful ‘self-evident truths’ concerning the implementation of wind power," Energy Policy, Elsevier, vol. 48(C), pages 83-87.
    13. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    14. James G. MacKinnon & Matthew D. Webb, 2018. "The wild bootstrap for few (treated) clusters," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135, June.
    15. Matthew Cashmore & David Rudolph & Sanne Vammen Larsen & Helle Nielsen, 2019. "International experiences with opposition to wind energy siting decisions: lessons for environmental and social appraisal," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(7), pages 1109-1132, June.
    16. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    17. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    18. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    19. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).
    20. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    21. Catherine Mitchell, 2016. "Momentum is increasing towards a flexible electricity system based on renewables," Nature Energy, Nature, vol. 1(2), pages 1-6, February.
    22. Ladenburg, Jacob & Termansen, Mette & Hasler, Berit, 2013. "Assessing acceptability of two onshore wind power development schemes: A test of viewshed effects and the cumulative effects of wind turbines," Energy, Elsevier, vol. 54(C), pages 45-54.
    23. Jan Stede & Nils May, 2019. "Strikte Mindestabstände bremsen den Ausbau der Windenergie," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 86(48), pages 895-903.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Naegler & Lisa Becker & Jens Buchgeister & Wolfgang Hauser & Heidi Hottenroth & Tobias Junne & Ulrike Lehr & Oliver Scheel & Ricarda Schmidt-Scheele & Sonja Simon & Claudia Sutardhio & Ingela T, 2021. "Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways," Sustainability, MDPI, vol. 13(9), pages 1-28, May.
    2. Stetter, Chris & Wielert, Henrik & Breitner, Michael H., 2022. "Hidden repowering potential of non-repowerable onshore wind sites in Germany," Energy Policy, Elsevier, vol. 168(C).
    3. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Croonenbroeck, Carsten & Hennecke, David, 2021. "A comparison of optimizers in a unified standard for optimization on wind farm layout optimization," Energy, Elsevier, vol. 216(C).
    5. Peri, Erez & Tal, Alon, 2021. "Is setback distance the best criteria for siting wind turbines under crowded conditions? An empirical analysis," Energy Policy, Elsevier, vol. 155(C).
    6. Oehlmann, Malte & Glenk, Klaus & Lloyd-Smith, Patrick & Meyerhoff, Jürgen, 2021. "Quantifying landscape externalities of renewable energy development: Implications of attribute cut-offs in choice experiments," Resource and Energy Economics, Elsevier, vol. 65(C).
    7. Jan-Niklas Meier & Paul Lehmann & Bernd Süssmuth & Stephan Wedekind, 2024. "Wind power deployment and the impact of spatial planning policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 491-550, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Stede & Marc Blauert & Nils May, 2021. "Way Off: The Effect of Minimum Distance Regulation on the Deployment and Cost of Wind Power," Discussion Papers of DIW Berlin 1989, DIW Berlin, German Institute for Economic Research.
    2. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    3. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Wild Bootstrap and Asymptotic Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
    4. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    5. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    6. Tsani, Tsamara & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Quantifying social factors for onshore wind planning – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    7. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    8. James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 851-881, August.
    9. Dorner, Matthias & Görlitz, Katja, 2020. "Training, wages and a missing school graduation cohort," IAB-Discussion Paper 202028, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    10. Damian Clarke & Kathya Tapia-Schythe, 2021. "Implementing the panel event study," Stata Journal, StataCorp LP, vol. 21(4), pages 853-884, December.
    11. MacKinnon, James G. & Webb, Matthew D., 2020. "Randomization inference for difference-in-differences with few treated clusters," Journal of Econometrics, Elsevier, vol. 218(2), pages 435-450.
    12. Buenstorf, Guido & Koenig, Johannes, 2020. "Interrelated funding streams in a multi-funder university system: Evidence from the German Exzellenzinitiative," Research Policy, Elsevier, vol. 49(3).
    13. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    14. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    15. Christopher S. Carpenter & Gilbert Gonzales Jr. & Tara McKay & Dario Sansone, 2020. "Effects of the Affordable Care Act Dependent Coverage Mandate on Health Insurance Coverage for Individuals in Same-Sex Couples," NBER Working Papers 26978, National Bureau of Economic Research, Inc.
    16. Tafarte, Philip & Lehmann, Paul, 2021. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity: A case study for Germany," UFZ Discussion Papers 2/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    17. Choi, Jihye & Kim, Justine Jihyun & Lee, Jongsu, 2024. "Public willingness to pay for mitigating local conflicts over the construction of renewable energy facilities: A contingent valuation study in South Korea," Energy Policy, Elsevier, vol. 185(C).
    18. Andrea Ciaccio, 2023. "The Impact of a Cost-containment Measure on the Quality of Regional Health Services in Italy: a Parametric and a Non-parametric Approach," Working Papers 2023: 24, Department of Economics, University of Venice "Ca' Foscari".
    19. Blake Shaffer, 2019. "Location matters: Daylight saving time and electricity demand," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(4), pages 1374-1400, November.
    20. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust," Stata Journal, StataCorp LP, vol. 23(4), pages 942-982, December.

    More about this item

    Keywords

    Onshore wind power; minimum distance; separation distance; energy transition; acceptance; panel data; difference-in-differences; causal inference; event study;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.