IDEAS home Printed from https://ideas.repec.org/p/zbw/ufzdps/22021.html
   My bibliography  Save this paper

Quantifying trade-offs for the spatial allocation of onshore wind generation capacity: A case study for Germany

Author

Listed:
  • Tafarte, Philip
  • Lehmann, Paul

Abstract

The deployment of onshore wind power is an important means to mitigate climate change. However, wind turbines also have negative impacts at the local scale, like disamenities to residents living nearby, changes in landscape quality, or conflicts with nature conservation. Our paper analyses how these impacts affect the optimal siting of wind turbines, as compared to a spatial allocation focused solely on minimizing generation costs. To quantify the spatial trade-offs between these criteria, we propose a novel approach using Pareto frontiers and a Gini-like potential trade-off indicator. Our analysis builds on a spatial optimization model using geographical information system data for Germany. We show that spatial trade-offs between the criteria under consideration are significant. The size of the trade-off varies substantially with the criteria under consideration, depending on the spatial heterogeneity of each criterion as well as on the spatial correlation between the criteria. Spatial trade-offs are particularly pronounced between nature conservation (measured by impacts on wind powersensitive birds) and other criteria.

Suggested Citation

  • Tafarte, Philip & Lehmann, Paul, 2021. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity: A case study for Germany," UFZ Discussion Papers 2/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  • Handle: RePEc:zbw:ufzdps:22021
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/234329/1/1758408324.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dröes, Martijn I. & Koster, Hans R.A., 2016. "Renewable energy and negative externalities: The effect of wind turbines on house prices," Journal of Urban Economics, Elsevier, vol. 96(C), pages 121-141.
    2. Kienast, Felix & Huber, Nica & Hergert, Rico & Bolliger, Janine & Moran, Lorena Segura & Hersperger, Anna M., 2017. "Conflicts between decentralized renewable electricity production and landscape services – A spatially-explicit quantitative assessment for Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 397-407.
    3. Egli, Thomas & Bolliger, Janine & Kienast, Felix, 2017. "Evaluating ecosystem service trade-offs with wind electricity production in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 863-875.
    4. Atici, Kazim Baris & Simsek, Ahmet Bahadir & Ulucan, Aydin & Tosun, Mustafa Umur, 2015. "A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection," Utilities Policy, Elsevier, vol. 37(C), pages 86-96.
    5. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    6. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    7. Ladenburg, Jacob & Termansen, Mette & Hasler, Berit, 2013. "Assessing acceptability of two onshore wind power development schemes: A test of viewshed effects and the cumulative effects of wind turbines," Energy, Elsevier, vol. 54(C), pages 45-54.
    8. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    9. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
    10. Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
    11. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    12. Eriksen, Emil H. & Schwenk-Nebbe, Leon J. & Tranberg, Bo & Brown, Tom & Greiner, Martin, 2017. "Optimal heterogeneity in a simplified highly renewable European electricity system," Energy, Elsevier, vol. 133(C), pages 913-928.
    13. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    14. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    15. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    16. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    17. Hermes, Johannes & Albert, Christian & von Haaren, Christina, 2018. "Assessing the aesthetic quality of landscapes in Germany," Ecosystem Services, Elsevier, vol. 31(PC), pages 296-307.
    18. Gibbons, Stephen, 2015. "Gone with the wind: Valuing the visual impacts of wind turbines through house prices," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 177-196.
    19. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
    20. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
    21. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    22. Ladenburg, Jacob & Dahlgaard, Jens-Olav, 2012. "Attitudes, threshold levels and cumulative effects of the daily wind-turbine encounters," Applied Energy, Elsevier, vol. 98(C), pages 40-46.
    23. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    24. Schaber, Katrin & Steinke, Florian & Mühlich, Pascal & Hamacher, Thomas, 2012. "Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions," Energy Policy, Elsevier, vol. 42(C), pages 498-508.
    25. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    26. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    27. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    28. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2011. "Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines," Energy Policy, Elsevier, vol. 39(6), pages 3845-3854, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Reutter & Charlotte Geiger & Paul Lehmann & Jan-Niklas Meier & Philip Tafarte, 2022. "Flächenziele für die Windenergie: Wie zielführend ist das neue Wind-an-Land-Gesetz? [Land Area Targets for Wind Energy: How Promising Is the New Onshore Wind Power Legislation?]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(9), pages 703-708, September.
    2. Kristine Grimsrud & Cathrine Hagem & Kristina Haaskjold & Henrik Lindhjem & Megan Nowell, 2024. "Spatial Trade-Offs in National Land-Based Wind Power Production in Times of Biodiversity and Climate Crises," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 401-436, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    2. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    4. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    5. Tsani, Tsamara & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Quantifying social factors for onshore wind planning – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2020. "Managing spatial sustainability trade-offs: The case of wind power," UFZ Discussion Papers 4/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    7. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    8. Grimsrud, Kristine & Hagem, Cathrine & Lind, Arne & Lindhjem, Henrik, 2021. "Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids," Energy Economics, Elsevier, vol. 102(C).
    9. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    11. Kristine Grimsrud & Cathrine Hagem & Arne Lind & Henrik Lindhjem, 2020. "Efficient spatial allocation of wind power plants given environmental externalities due to turbines and grids," Discussion Papers 938, Statistics Norway, Research Department.
    12. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
    13. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    14. Yushi Kunugi & Toshi H. Arimura & Miwa Nakai, 2021. "The Long-Term Impact of Wind Power Generation on a Local Community: Economics Analysis of Subjective Well-Being Data in Chōshi City," Energies, MDPI, vol. 14(13), pages 1-18, July.
    15. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    16. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    17. Anders Dugstad & Kristine M. Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2021. "Scope Elasticity of Willingness to pay in Discrete Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 21-57, September.
    18. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan & Vance, Colin, 2019. "Local cost for global benefit: The case of wind turbines," Ruhr Economic Papers 791, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen, revised 2019.
    19. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    20. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    impact assessment; Germany; renewable energy; spatial optimization; wind power;
    All these keywords.

    JEL classification:

    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ufzdps:22021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/doufzde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.