IDEAS home Printed from https://ideas.repec.org/p/dia/wpaper/dt201309.html
   My bibliography  Save this paper

Learning to walk before you run: Financial Behavior and mobile banking in Madagascar

Author

Listed:
  • Florence Arestoff

    (PSL, Université Paris-Dauphine, LEDa, UMR DIAL)

  • Baptiste Venet

    (PSL, Université Paris-Dauphine, LEDa, UMR DIAL)

Abstract

(english) In Madagascar, Orange introduced its mobile banking services in September 2010. Mobile-banking (m-banking) is a system that allows users to conduct a number of financial transactions through a mobile phone. The existing body of literature suggests that the use of m-banking services may have a positive impact on individual savings, affect money transfer behavior and/or encourage financial inclusion. In 2012, we conducted a survey of 598 randomly selected Orange clients in Antananarivo. We use the matching methodology to assess the impacts of m-banking on clients' financial behavior. The results show that the use of m-banking services increases the number of national remittances sent and received. It is in line with the conclusions of the existing literature devoted to M-Pesa in Kenya. Yet we find that using of m-banking services has no significant impact on the sums saved by users or the sums of remittances sent and received, which appears to contradict the users' perceptions. This result may, however, be explained by a learning-by-doing process: users need to first learn to trust the e-money system before making any significant changes to their financial behavior. _________________________________ (français) En septembre 2010, l’opérateur Orange a introduit les services de banque mobile appelés Orange Money à Madagascar. Ils permettent d’effectuer des opérations de dépôt et de retrait d’argent, de transferts nationaux et de paiements de marchandises. Selon la littérature existante, l’utilisation de ces services engendrerait une augmentation de l’épargne individuelle, pourrait modifier les comportements de transferts et/ou favoriser la bancarisation des plus pauvres. Afin d’analyser les conséquences du m-banking sur les comportements financiers des populations concernées à Madagascar, nous procédons à une étude d’impact reposant sur des données originales. En mars 2012, nous avons réalisé une enquête auprès de 196 clients Orange utilisateurs réguliers des services Orange money et 402 clients Orange non utilisateurs de ces services. Afin de comparer rigoureusement les comportements financiers de ces deux groupes, nous apparions les individus sur la base de leurs scores de propension respectifs. Nos résultats montrent alors que l’utilisation des services Orange Money conduit à accroître significativement la fréquence des transferts envoyés et reçus. Ce résultat est corroboré par l’approche subjective puisque 55% des utilisateurs Orange Money déclarent que ce service les a encouragés à effectuer des transferts plus fréquemment. En revanche, nous montrons qu’Orange Money n’a d’impact significatif ni sur les montants épargnés ni sur les montants transférés (à l’envoi comme à la réception), ce qui tend à contredire le sentiment des utilisateurs. La temporalité des effets des services de m-banking apparaît alors. Les modifications de montants transférés et épargnés s’inscrivent probablement davantage dans la durée alors que la fréquence des transferts serait plus rapidement affectée eu égard au moindre coût et à la facilité d’utilisation d’Orange Money.

Suggested Citation

  • Florence Arestoff & Baptiste Venet, 2013. "Learning to walk before you run: Financial Behavior and mobile banking in Madagascar," Working Papers DT/2013/09, DIAL (Développement, Institutions et Mondialisation).
  • Handle: RePEc:dia:wpaper:dt201309
    as

    Download full text from publisher

    File URL: https://dial.ird.fr/wp-content/uploads/2021/10/2013-09-Learning-to-walk-before-you-run-Financial-Behavior-and-mobile-banking-in-Madagascar.pdf
    File Function: First version, 2013
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    3. Beatriz Armendariz & Jonathan Morduch, 2007. "The Economics of Microfinance," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262512017, April.
    4. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    5. Olga Morawczynski & Mark Pickens, 2009. "Poor People Using Mobile Financial Services : Observations on Customer Usage and Impact from M-PESA," World Bank Publications - Reports 9492, The World Bank Group.
    6. Claire Bonnard, 2011. "Les incitations à l'innovation dans le secteur privé," Post-Print halshs-00599700, HAL.
    7. Isaac Mbiti & David N. Weil, 2015. "Mobile Banking: The Impact of M-Pesa in Kenya," NBER Chapters, in: African Successes, Volume III: Modernization and Development, pages 247-293, National Bureau of Economic Research, Inc.
    8. Demombynes, Gabriel & Thegeya, Aaron, 2012. "Kenya's mobile revolution and the promise of mobile savings," Policy Research Working Paper Series 5988, The World Bank.
    9. William Jack & Tavneet Suri, 2011. "Mobile Money: The Economics of M-PESA," NBER Working Papers 16721, National Bureau of Economic Research, Inc.
    10. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    11. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leo Van Hove & Antoine Dubus, 2019. "M-PESA and Financial Inclusion in Kenya: Of Paying Comes Saving?," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    2. Metzger, Martina & Were, Maureen & Pédussel Wu, Jennifer, 2022. "Financial inclusion, mobile money and regulatory architecture," IPE Working Papers 202/2022, Berlin School of Economics and Law, Institute for International Political Economy (IPE).
    3. Antoine Dubus & Leo van Hove, 2017. "M-PESA and financial inclusion in Kenya: of paying comes saving?," Working Papers hal-01591200, HAL.
    4. Maëlle Della Peruta, 2015. "Mobile Money Adoption and Financial Inclusion Objectives: A Macroeconomic Approach through a Cluster Analysis," GREDEG Working Papers 2015-49, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    5. Baptiste Venet, 2019. "Fintech and Financial Inclusion," Post-Print hal-02294648, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/11979 is not listed on IDEAS
    2. Florence Arestoff & Baptiste Venet, 2017. "Learning to walk before you run : Financial Behavior and mobile banking in Madagascar," Working Papers hal-01491217, HAL.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    5. Jasmin Kantarevic & Boris Kralj, 2013. "Link Between Pay For Performance Incentives And Physician Payment Mechanisms: Evidence From The Diabetes Management Incentive In Ontario," Health Economics, John Wiley & Sons, Ltd., vol. 22(12), pages 1417-1439, December.
    6. Sankar Mukhopadhyay & David Oxborrow, 2012. "The Value of an Employment-Based Green Card," Demography, Springer;Population Association of America (PAA), vol. 49(1), pages 219-237, February.
    7. Andrea Pufahl & Christoph R. Weiss, 2009. "Evaluating the effects of farm programmes: results from propensity score matching," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 79-101, March.
    8. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    9. Olivier Dagnelie & Philippe Lemay‐Boucher, 2012. "Rosca Participation in Benin: A Commitment Issue," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 235-252, April.
    10. Ramírez-Álvarez, Aurora Alejandra, 2019. "Land titling and its effect on the allocation of public goods: Evidence from Mexico," World Development, Elsevier, vol. 124(C), pages 1-1.
    11. Tymon Słoczyński, 2015. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
    12. Tommaso Nannicini, 2007. "Simulation-based sensitivity analysis for matching estimators," Stata Journal, StataCorp LP, vol. 7(3), pages 334-350, September.
    13. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    14. Hohendanner Christian, 2011. "Ein-Euro-Jobs und reguläre Beschäftigung / One-Euro-Jobs and Regular Employment: Eine Analyse potenzieller Substitutionseffekte mit Daten des IAB-Betriebspanels / An Analysis of Potential Substitution," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(2), pages 210-246, April.
    15. Rodrigo Dorantes-Gilardi & Aurora A. Ramírez-Álvarez & Diana Terrazas-Santamaría, 2023. "Is there a differentiated gender effect of collaboration with super-cited authors? Evidence from junior researchers in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2317-2336, April.
    16. Anupam Nanda, 2005. "Property Condition Disclosure Law: Does 'Seller Tell All' Matter in Property Values?," Working papers 2005-47, University of Connecticut, Department of Economics, revised Jul 2006.
    17. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    18. Johar, Meliyanni, 2009. "The impact of the Indonesian health card program: A matching estimator approach," Journal of Health Economics, Elsevier, vol. 28(1), pages 35-53, January.
    19. A. Nivorozhkin & E. Nivorozhkin, 2007. "Do government sponsored vocational training programmes help the unemployed find jobs? Evidence from Russia," Applied Economics Letters, Taylor & Francis Journals, vol. 14(1), pages 5-10.
    20. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    21. Wendimu, Mengistu Assefa & Henningsen, Arne & Gibbon, Peter, 2016. "Sugarcane Outgrowers in Ethiopia: “Forced” to Remain Poor?," World Development, Elsevier, vol. 83(C), pages 84-97.

    More about this item

    Keywords

    Mobile banking; Financial behavior; Low Income countries; Matching methodology; Banque mobile; Matching; Comportements financiers; Pays en développement.;
    All these keywords.

    JEL classification:

    • G2 - Financial Economics - - Financial Institutions and Services
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dia:wpaper:dt201309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Loic Le Pezennec (email available below). General contact details of provider: https://edirc.repec.org/data/diallfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.