IDEAS home Printed from https://ideas.repec.org/p/dbe/wpaper/0217.html
   My bibliography  Save this paper

Asymmetric players in the Solidarity and Shapley values

Author

Listed:
  • Emilio Calvo

    (Universidad de Valencia. ERI-CES)

  • Esther Gutiérrez-López

    (Departamento de Economía Aplicada IV. Universidad del País Vasco U.P.V./E.H.U.)

Abstract

We present a general bargaining protocol between n players in the setting of coalitional games with transferable utility. We consider asymmetric players. They are endowed with di¤erent probabilities of being chosen as proposers and with di¤erent probabilities of leaving the game if o¤ers are rejected. Two particular speci…cations of this bargaining protocol yield equilibrium proposals that we refer to as weighted solidarity values and weighted Shapley values. We compare the behavior of these values when the players’ probabilities are changed. We supplement the analysis with axiomatic characterizations of both values.

Suggested Citation

  • Emilio Calvo & Esther Gutiérrez-López, 2017. "Asymmetric players in the Solidarity and Shapley values," Discussion Papers in Economic Behaviour 0217, University of Valencia, ERI-CES.
  • Handle: RePEc:dbe:wpaper:0217
    as

    Download full text from publisher

    File URL: https://www.uv.es/erices/RePEc/WP/2017/0217.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    2. Emilio Calvo & Esther Gutiérrez, 2013. "The Shapley-Solidarity Value For Games With A Coalition Structure," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-24.
    3. Calvo, Emilio & Gutiérrez-López, Esther, 2014. "Axiomatic characterizations of the weighted solidarity values," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 6-11.
    4. Emilio Calvo, 2008. "Random marginal and random removal values," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 533-563, December.
    5. Guillermo Owen, 1968. "Communications to the Editor--A Note on the Shapley Value," Management Science, INFORMS, vol. 14(11), pages 731-731, July.
    6. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    7. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    8. Radzik, Tadeusz, 2012. "A new look at the role of players’ weights in the weighted Shapley value," European Journal of Operational Research, Elsevier, vol. 223(2), pages 407-416.
    9. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    10. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-380, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Calvo & Esther Gutiérrez-López, 2018. "Discounted Solidarity Values," Discussion Papers in Economic Behaviour 0418, University of Valencia, ERI-CES.
    2. Emilio Calvo & Esther Gutiérrez, 2012. "Weighted Solidarity Values," Discussion Papers in Economic Behaviour 0212, University of Valencia, ERI-CES.
    3. Bourheneddine Ben Dhaou & Abderrahmane Ziad, 2015. "The Free Solidarity Value," Economics Working Paper Archive (University of Rennes & University of Caen) 201508, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    4. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.
    5. Radzik, Tadeusz, 2013. "Is the solidarity value close to the equal split value?," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 195-202.
    6. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    7. Marco Rogna, 2022. "The Burning Coalition Bargaining Model," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(3), pages 735-768, October.
    8. Calvo, Emilio & Gutiérrez-López, Esther, 2014. "Axiomatic characterizations of the weighted solidarity values," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 6-11.
    9. Chessa, Michela & Hanaki, Nobuyuki & Lardon, Aymeric & Yamada, Takashi, 2022. "The effect of choosing a proposer through a bidding procedure in implementing the Shapley value," Journal of Economic Psychology, Elsevier, vol. 93(C).
    10. Vidal-Puga, Juan, 2013. "A non-cooperative approach to the ordinal Shapley rule," MPRA Paper 43790, University Library of Munich, Germany.
    11. Michela Chessa & Nobuyuki Hanaki & Aymeric Lardon & Takashi Yamada, 2023. "An Experiment on Demand Commitment Bargaining," Dynamic Games and Applications, Springer, vol. 13(2), pages 589-609, June.
    12. Radzik, Tadeusz & Driessen, Theo, 2013. "On a family of values for TU-games generalizing the Shapley value," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 105-111.
    13. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    14. Emilio Calvo Ramón & Esther Gutiérrez-López, 2022. "The equal collective gains value in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 249-278, March.
    15. Emilio Calvo, 2008. "Random marginal and random removal values," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 533-563, December.
    16. Ju, Yuan, 2012. "Reject and renegotiate: The Shapley value in multilateral bargaining," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 431-436.
    17. Michela Chessa & Nobuyuki Hanaki & Aymeric Lardon & Takashi Yamada, 2022. "An experiment on the Nash program: Comparing two strategic mechanisms implementing the Shapley value," ISER Discussion Paper 1175, Institute of Social and Economic Research, Osaka University.
    18. Tadeusz Radzik & Theo Driessen, 2016. "Modeling values for TU-games using generalized versions of consistency, standardness and the null player property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 179-205, April.
    19. Vidal-Puga, Juan, 2015. "A non-cooperative approach to the ordinal Shapley–Shubik rule," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 111-118.
    20. Laruelle, Annick & Valenciano, Federico, 2008. "Noncooperative foundations of bargaining power in committees and the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 63(1), pages 341-353, May.

    More about this item

    Keywords

    n-person bargaining; transferable utility games; asymmetric players; solidarity value; Shapley value.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbe:wpaper:0217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emilio Calvo Ramón (email available below). General contact details of provider: https://edirc.repec.org/data/ericees.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.