IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2111.html
   My bibliography  Save this paper

Latent Variable Nonparametric Cointegrating Regression

Author

Listed:

Abstract

This paper studies the asymptotic properties of empirical nonparametric regressions that partially misspecify the relationships between nonstationary variables. In particular, we analyze nonparametric kernel regressions in which a potential nonlinear cointegrating regression is misspecified through the use of a proxy regressor in place of the true regressor. Such regressions arise naturally in linear and nonlinear regressions where the regressor suffers from measurement error or where the true regressor is a latent variable. The model considered allows for endogenous regressors as the latent variable and proxy variables that cointegrate asymptotically with the true latent variable. Such a framework includes correctly specified systems as well as misspecified models in which the actual regressor serves as a proxy variable for the true regressor. The system is therefore intermediate between nonlinear nonparametric cointegrating regression (Wang and Phillips, 2009a, 2009b) and completely misspecified nonparametric regressions in which the relationship is entirely spurious (Phillips, 2009). The asymptotic results relate to recent work on dynamic misspecification in nonparametric nonstationary systems by Kasparis and Phillips (2012) and Duffy (2014). The limit theory accommodates regressor variables with autoregressive roots that are local to unity and whose errors are driven by long memory and short memory innovations, thereby encompassing applications with a wide range of economic and financial time series.

Suggested Citation

  • Qiying Wang & Peter C.B. Phillips & Ioannis Kasparis, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 2111, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2111
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d21/d2111.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. P. Jeganathan, 2008. "Limit Theorems for Functionals of Sums that Converge to Fractional Brownian and Stable Motions," Cowles Foundation Discussion Papers 1649, Cowles Foundation for Research in Economics, Yale University.
    2. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    4. Schennach, Susanne M., 2004. "Nonparametric Regression In The Presence Of Measurement Error," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1046-1093, December.
    5. Adusumilli, Karun & Otsu, Taisuke, 2018. "Nonparametric Instrumental Regression With Errors In Variables," Econometric Theory, Cambridge University Press, vol. 34(6), pages 1256-1280, December.
    6. Wang, Qiying & Phillips, Peter C.B., 2011. "Asymptotic Theory For Zero Energy Functionals With Nonparametric Regression Applications," Econometric Theory, Cambridge University Press, vol. 27(2), pages 235-259, April.
    7. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
    8. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    9. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    10. Wang, Qiying & Phillips, Peter C. B., 2016. "Nonparametric Cointegrating Regression With Endogeneity And Long Memory," Econometric Theory, Cambridge University Press, vol. 32(2), pages 359-401, April.
    11. Wang, Qiying & Lin, Yan-Xia & Gulati, Chandra M., 2003. "Asymptotics For General Fractionally Integrated Processes With Applications To Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(1), pages 143-164, February.
    12. Wang, Qiying, 2014. "Martingale Limit Theorem Revisited And Nonlinear Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 30(3), pages 509-535, June.
    13. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    14. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiying Wang & Peter C. B. Phillips, 2022. "A General Limit Theory for Nonlinear Functionals of Nonstationary Time Series," Cowles Foundation Discussion Papers 2337, Cowles Foundation for Research in Economics, Yale University.
    2. Qiying Wang & Peter C. B. Phillips & Ying Wang, 2023. "New asymptotics applied to functional coefficient regression and climate sensitivity analysis," Cowles Foundation Discussion Papers 2365, Cowles Foundation for Research in Economics, Yale University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiying Wang & Peter C.B. Phillips & Ioannis Kasparis, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 3011, Cowles Foundation for Research in Economics, Yale University.
    2. Qiying Wang & Peter C. B. Phillips & Ying Wang, 2023. "New asymptotics applied to functional coefficient regression and climate sensitivity analysis," Cowles Foundation Discussion Papers 2365, Cowles Foundation for Research in Economics, Yale University.
    3. Dong, Chaohua & Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2017. "Specification testing for nonlinear multivariate cointegrating regressions," Journal of Econometrics, Elsevier, vol. 200(1), pages 104-117.
    4. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    5. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    6. Qiying Wang & Peter C. B. Phillips, 2022. "A General Limit Theory for Nonlinear Functionals of Nonstationary Time Series," Cowles Foundation Discussion Papers 2337, Cowles Foundation for Research in Economics, Yale University.
    7. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.
    8. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    9. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
    10. Tu, Yundong & Wang, Ying, 2022. "Spurious functional-coefficient regression models and robust inference with marginal integration," Journal of Econometrics, Elsevier, vol. 229(2), pages 396-421.
    11. Hu, Zhishui & Phillips, Peter C.B. & Wang, Qiying, 2021. "Nonlinear Cointegrating Power Function Regression With Endogeneity," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1173-1213, December.
    12. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    13. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    14. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
    15. Sepideh Mosaferi & Mark S. Kaiser, 2021. "Nonparametric Cointegrating Regression Functions with Endogeneity and Semi-Long Memory," Papers 2111.00972, arXiv.org, revised Aug 2022.
    16. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," Journal of Econometrics, Elsevier, vol. 216(1), pages 175-191.
    17. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," LSE Research Online Documents on Economics 103830, London School of Economics and Political Science, LSE Library.
    18. Gao, Jiti & Phillips, Peter C.B., 2013. "Semiparametric estimation in triangular system equations with nonstationarity," Journal of Econometrics, Elsevier, vol. 176(1), pages 59-79.
    19. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    20. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.

    More about this item

    Keywords

    Cointegrating regression; Kernel regression; Latent variable; Local time; Misspecification; Nonlinear nonparametric nonstationary regression;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.