IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1585r.html
   My bibliography  Save this paper

Adaptive Estimation of Autoregressive Models with Time-Varying Variances

Author

Abstract

Stable autoregressive models of known finite order are considered with martingale differences errors scaled by an unknown nonparametric time-varying function generating heterogeneity. An important special case involves structural change in the error variance, but in most practical cases the pattern of variance change over time is unknown and may involve shifts at unknown discrete points in time, continuous evolution or combinations of the two. This paper develops kernel-based estimators of the residual variances and associated adaptive least squares (ALS) estimators of the autoregressive coefficients. These are shown to be asymptotically efficient, having the same limit distribution as the infeasible generalized least squares (GLS). Comparisons of the efficient procedure and ordinary least squares (OLS) reveal that least squares can be extremely inefficient in some cases while nearly optimal in others. Simulations show that, when least squares work well, the adaptive estimators perform comparably well, whereas when least squares work poorly, major efficiency gains are achieved by the new estimators.

Suggested Citation

  • Ke-Li Xu & Peter C.B. Phillips, 2006. "Adaptive Estimation of Autoregressive Models with Time-Varying Variances," Cowles Foundation Discussion Papers 1585R, Cowles Foundation for Research in Economics, Yale University, revised Nov 2006.
  • Handle: RePEc:cwl:cwldpp:1585r
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d15/d1585-r.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    3. Kuersteiner, Guido M., 2002. "Efficient Iv Estimation For Autoregressive Models With Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 18(3), pages 547-583, June.
    4. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    5. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    6. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    7. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    8. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    9. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    10. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    11. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
    12. Chung, Heetaik & Park, Joon Y., 2007. "Nonstationary nonlinear heteroskedasticity in regression," Journal of Econometrics, Elsevier, vol. 137(1), pages 230-259, March.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    15. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    16. Mark W. Watson, 1999. "Explaining the increased variability in long-term interest rates," Economic Quarterly, Federal Reserve Bank of Richmond, issue Fall, pages 71-96.
    17. D van Dijk & D R Osborn & M Sensier, 2002. "Changes in variability of the business cycle in the G7 countries," Economics Discussion Paper Series 0204, Economics, The University of Manchester.
    18. Sangyeol Lee & Siyun Park, 2001. "The Cusum of Squares Test for Scale Changes in Infinite Order Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 625-644, December.
    19. Hansen, Bruce E, 1995. "Regression with Nonstationary Volatility," Econometrica, Econometric Society, vol. 63(5), pages 1113-1132, September.
    20. Kuersteiner, Guido M., 2001. "Optimal instrumental variables estimation for ARMA models," Journal of Econometrics, Elsevier, vol. 104(2), pages 359-405, September.
    21. Peter C.B. Phillips & Mico Loretan, 1990. "Testing Covariance Stationarity Under Moment Condition Failure with an Application to Common Stock Returns," Cowles Foundation Discussion Papers 947, Cowles Foundation for Research in Economics, Yale University.
    22. Catalin Starica & Stefano Herzel & Tomas Nord, 2005. "Why does the GARCH(1,1) model fail to provide sensible longer- horizon volatility forecasts?," Econometrics 0508003, University Library of Munich, Germany.
    23. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    24. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    25. Gabriel Perez-Quiros & Margaret M. McConnell, 2000. "Output Fluctuations in the United States: What Has Changed since the Early 1980's?," American Economic Review, American Economic Association, vol. 90(5), pages 1464-1476, December.
    26. B. Abraham & W. Wei, 1984. "Inferences about the parameters of a time series model with changing variance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 31(1), pages 183-194, December.
    27. Robert F. Engle & Jose Gonzalo Rangel, 2005. "The Spline GARCH Model for Unconditional Volatility and its Global Macroeconomic Causes," Working Papers 2005/13, Czech National Bank.
    28. Polzehl, Jörg & Spokoiny, Vladimir, 2006. "Varying coefficient GARCH versus local constant volatility modeling: Comparison of the predictive power," SFB 649 Discussion Papers 2006-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    29. Kim, Tae-Hwan & Leybourne, Stephen & Newbold, Paul, 2002. "Unit root tests with a break in innovation variance," Journal of Econometrics, Elsevier, vol. 109(2), pages 365-387, August.
    30. Silvia Gonçalves & Lutz Kilian, 2003. "Asymptotic and Bootstrap Inference for AR( Infinite ) Processes with Conditional Heteroskedasticity," CIRANO Working Papers 2003s-28, CIRANO.
    31. Cavaliere, Giuseppe, 2004. "Testing stationarity under a permanent variance shift," Economics Letters, Elsevier, vol. 82(3), pages 403-408, March.
    32. Galeano, Pedro, 2004. "Variance changes detection in multivariate time series," DES - Working Papers. Statistics and Econometrics. WS ws041305, Universidad Carlos III de Madrid. Departamento de Estadística.
    33. repec:bla:jecsur:v:16:y:2002:i:3:p:245-69 is not listed on IDEAS
    34. Hamori, Shigeyuki & Tokihisa, Akira, 1997. "Testing for a unit root in the presence of a variance shift1," Economics Letters, Elsevier, vol. 57(3), pages 245-253, December.
    35. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    36. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    37. Delgado, Miguel A. & Hidalgo, Javier, 2000. "Nonparametric inference on structural breaks," Journal of Econometrics, Elsevier, vol. 96(1), pages 113-144, May.
    38. Yu, K. & Jones, M.C., 2004. "Likelihood-Based Local Linear Estimation of the Conditional Variance Function," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 139-144, January.
    39. W. K. Li & Shiqing Ling & Michael McAleer, 2002. "Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    40. Peter C. B. Phillips & Ke‐Li Xu, 2006. "Inference in Autoregression under Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 289-308, March.
    41. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    42. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    43. Peter C.B. Phillips & Ke-Li Xu, 2007. "Tilted Nonparametric Estimation of Volatility Functions," Cowles Foundation Discussion Papers 1612, Cowles Foundation for Research in Economics, Yale University, revised Jul 2010.
    44. A. C. Harvey & P. M. Robinson, 1988. "Efficient Estimation Of Nonstationary Time Series Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(3), pages 201-214, May.
    45. Busetti, Fabio & Taylor, A M Robert, 2003. "Variance Shifts, Structural Breaks, and Stationarity Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 510-531, October.
    46. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    2. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    3. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    4. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    5. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    6. Brandan K. Beare, 2008. "Unit Root Testing with Unstable Volatility," Economics Series Working Papers 2008-WO6, University of Oxford, Department of Economics.
    7. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Testing for a change in persistence in the presence of non-stationary volatility," Journal of Econometrics, Elsevier, vol. 147(1), pages 84-98, November.
    8. Harris, David & Kew, Hsein & Taylor, A.M. Robert, 2020. "Level shift estimation in the presence of non-stationary volatility with an application to the unit root testing problem," Journal of Econometrics, Elsevier, vol. 219(2), pages 354-388.
    9. Brendan K. Beare, 2018. "Unit Root Testing with Unstable Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 816-835, November.
    10. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    11. Pal, Debdatta, 2022. "Does hospitality industry stock volatility react asymmetrically to health and economic crises?," Economic Modelling, Elsevier, vol. 108(C).
    12. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    13. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 676-690, September.
    14. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    15. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    16. Cheng, Xu & Phillips, Peter C.B., 2012. "Cointegrating rank selection in models with time-varying variance," Journal of Econometrics, Elsevier, vol. 169(2), pages 155-165.
    17. Sven Otto, 2021. "Unit root testing with slowly varying trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 85-106, January.
    18. Kourogenis, Nikolaos & Pittis, Nikitas & Samartzis, Panagiotis, 2024. "Unbounded heteroscedasticity in autoregressive models," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    19. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
    20. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.

    More about this item

    Keywords

    Adaptive estimation; Autoregression; Heterogeneity; Weighted regression;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1585r. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.