IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i3p1230-1258.html
   My bibliography  Save this article

Asymptotic inference of the ARMA model with time‐functional variance noises

Author

Listed:
  • Bibi Cai
  • Enwen Zhu
  • Shiqing Ling

Abstract

This paper studies the autoregressive and moving average (ARMA) model with time‐functional variance (TFV) noises, called the ARMA‐TFV model. We first establish the consistency and asymptotic normality of its least squares estimator (LSE). The Wald tests and portmanteau tests are constructed based on the theory for variable selection and model checking. A simulation study is carried out to assess the performance of our approach in finite samples, and two real examples are given. It should be mentioned that the process generated from the ARMA‐TFV model is not stationary, and the technique in this paper is nonstandard and may provide insights for future research in this area.

Suggested Citation

  • Bibi Cai & Enwen Zhu & Shiqing Ling, 2024. "Asymptotic inference of the ARMA model with time‐functional variance noises," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1230-1258, September.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1230-1258
    DOI: 10.1111/sjos.12708
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12708
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patilea, V. & Raïssi, H., 2013. "Corrected portmanteau tests for VAR models with time-varying variance," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 190-207.
    2. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 869-902.
    3. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
    4. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2021. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 224(2), pages 306-329.
    7. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    8. Valentin Patilea & Hamdi Raïssi, 2014. "Testing Second-Order Dynamics for Autoregressive Processes in Presence of Time-Varying Variance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1099-1111, September.
    9. D van Dijk & D R Osborn & M Sensier, 2002. "Changes in variability of the business cycle in the G7 countries," Economics Discussion Paper Series 0204, Economics, The University of Manchester.
    10. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    12. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    13. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    14. Peter C. B. Phillips & Ke‐Li Xu, 2006. "Inference in Autoregression under Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 289-308, March.
    15. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Bootstrap Unit Root Tests For Time Series With Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 24(1), pages 43-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    2. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    3. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    4. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    5. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    6. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    7. Harris, David & Kew, Hsein & Taylor, A.M. Robert, 2020. "Level shift estimation in the presence of non-stationary volatility with an application to the unit root testing problem," Journal of Econometrics, Elsevier, vol. 219(2), pages 354-388.
    8. Hamdi Raissi, 2022. "On the dependence structure of the trade/no trade sequence of illiquid assets," Papers 2203.08223, arXiv.org.
    9. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 676-690, September.
    10. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    11. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    12. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
    13. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    14. Cheng, Xu & Phillips, Peter C.B., 2012. "Cointegrating rank selection in models with time-varying variance," Journal of Econometrics, Elsevier, vol. 169(2), pages 155-165.
    15. Helmut Herwartz & Yabibal M. Walle, 2018. "A powerful wild bootstrap diagnosis of panel unit roots under linear trends and time-varying volatility," Computational Statistics, Springer, vol. 33(1), pages 379-411, March.
    16. Brendan K. Beare, 2018. "Unit Root Testing with Unstable Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 816-835, November.
    17. Matei Demetrescu & Christoph Hanck, 2013. "Nonlinear IV panel unit root testing under structural breaks in the error variance," Statistical Papers, Springer, vol. 54(4), pages 1043-1066, November.
    18. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2021. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 224(2), pages 306-329.
    19. Valentin Patilea & Hamdi Raïssi, 2014. "Testing Second-Order Dynamics for Autoregressive Processes in Presence of Time-Varying Variance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1099-1111, September.
    20. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:1230-1258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.