IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v70y2002i3p1067-1109.html
   My bibliography  Save this article

Band Spectral Regression with Trending Data

Author

Listed:
  • Dean Corbae

    (Dept. of Economics, University of Texas at Austin, U.S.A.)

  • Sam Ouliaris

    (School of Business, National University of Singapore and Research Dept., IMF, Washington DC, U.S.A.)

  • Peter C. B. Phillips

    (Cowles Foundation for Research in Economics, Yale University, U.S.A. and University of Auckland and University of York)

Abstract

Band spectral regression with both deterministic and stochastic trends is considered. It is shown that trend removal by regression in the time domain prior to band spectral regression can lead to biased and inconsistent estimates in models with frequency dependent coefficients. Both semiparametric and nonparametric regression formulations are considered, the latter including general systems of two-sided distributed lags such as those arising in lead and lag regressions. The bias problem arises through omitted variables and is avoided by careful specification of the regression equation. Trend removal in the frequency domain is shown to be a convenient option in practice. An asymptotic theory is developed and the two cases of stationary data and cointegrated nonstationary data are compared. In the latter case, a levels and differences regression formulation is shown to be useful in estimating the frequency response function at nonzero as well as zero frequencies. Copyright The Econometric Society 2002.

Suggested Citation

  • Dean Corbae & Sam Ouliaris & Peter C. B. Phillips, 2002. "Band Spectral Regression with Trending Data," Econometrica, Econometric Society, vol. 70(3), pages 1067-1109, May.
  • Handle: RePEc:ecm:emetrp:v:70:y:2002:i:3:p:1067-1109
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    2. Peter C.B. Phillips & Chin Chin Lee, 1996. "Efficiency Gains from Quasi-Differencing Under Nonstationarity," Cowles Foundation Discussion Papers 1134, Cowles Foundation for Research in Economics, Yale University.
    3. Peter C.B. Phillips, 1988. "Spectral Regression for Cointegrated Time Series," Cowles Foundation Discussion Papers 872, Cowles Foundation for Research in Economics, Yale University.
    4. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    5. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    6. Xiao, Zhijie & Phillips, Peter C. B., 1998. "Higher-order approximations for frequency domain time series regression," Journal of Econometrics, Elsevier, vol. 86(2), pages 297-336, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).
    2. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    3. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. Phillips, Peter C B, 1994. "Some Exact Distribution Theory for Maximum Likelihood Estimators of Cointegrating Coefficients in Error Correction Models," Econometrica, Econometric Society, vol. 62(1), pages 73-93, January.
    6. Peter C.B. Phillips, 2001. "Bootstrapping Spurious Regression," Cowles Foundation Discussion Papers 1330, Cowles Foundation for Research in Economics, Yale University.
    7. Moon, Hyungsik R. & Phillips, Peter C.B., 2000. "Estimation Of Autoregressive Roots Near Unity Using Panel Data," Econometric Theory, Cambridge University Press, vol. 16(6), pages 927-997, December.
    8. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    9. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(5), pages 912-951, October.
    10. Kang Hao & Inder, Brett, 1996. "Diagnostic test for structural change in cointegrated regression models," Economics Letters, Elsevier, vol. 50(2), pages 179-187, February.
    11. Phillips, Peter C. B., 2002. "New unit root asymptotics in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 111(2), pages 323-353, December.
    12. Peter C. B. Phillips, 2005. "Econometric Analysis of Fisher's Equation," American Journal of Economics and Sociology, Wiley Blackwell, vol. 64(1), pages 125-168, January.
    13. Peter C.B. Phillips, 1991. "The Long-Run Australian Consumption Function Reexamined: An Empirical Exercise in Bayesian Influence," Cowles Foundation Discussion Papers 1000, Cowles Foundation for Research in Economics, Yale University.
    14. Xiao, Zhijie, 2004. "Estimating average economic growth in time series data with persistency," Journal of Macroeconomics, Elsevier, vol. 26(4), pages 699-724, December.
    15. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    16. Peter C.B. Phillips, 1992. "Hyper-Consistent Estimation of a Unit Root in Time Series Regression," Cowles Foundation Discussion Papers 1040, Cowles Foundation for Research in Economics, Yale University.
    17. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    18. Hyungsik Roger Moon & Peter C. B. Phillips, 2004. "GMM Estimation of Autoregressive Roots Near Unity with Panel Data," Econometrica, Econometric Society, vol. 72(2), pages 467-522, March.
    19. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    20. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:70:y:2002:i:3:p:1067-1109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.