IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws140804.html
   My bibliography  Save this paper

Recombining partitions from multivariate data: a clustering method on Bayes factors

Author

Listed:
  • Álvarez, Adolfo

Abstract

We introduce SAGRA (Split And Group Recombining Algorithm), a cluster analysis methodology which split the data set into small homogeneous groups and later recombine those groups using Bayes factors. We compare the performance of SAGRA with other three cluster analysis algorithms: SAR, M-clust and K-means, using five quality measures: Purity, number of groups, Rand index, adjusted Rand index, and F1, over four different data configurations. Results indicate that the SAGRA algorithm obtain consistently similar or better indexes than the other algorithms over all measures and data configurations

Suggested Citation

  • Álvarez, Adolfo, 2014. "Recombining partitions from multivariate data: a clustering method on Bayes factors," DES - Working Papers. Statistics and Econometrics. WS ws140804, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws140804
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/8c3228ce-103b-4548-9e8b-aec798f7813a/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Culp, Mark, 2011. "spa: Semi-Supervised Semi-Parametric Graph-Based Estimation in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i10).
    2. A. Azzalini & A.W. Bowman, 1990. "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(3), pages 357-365, November.
    3. Chris Fraley & Adrian E. Raftery, 1999. "MCLUST: Software for Model-Based Cluster Analysis," Journal of Classification, Springer;The Classification Society, vol. 16(2), pages 297-306, July.
    4. Christian Hennig, 2010. "Methods for merging Gaussian mixture components," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(1), pages 3-34, April.
    5. Atkinson, A.C. & Riani, M., 2007. "Exploratory tools for clustering multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 272-285, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:ws1450804 is not listed on IDEAS
    2. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire & McNicholas, Paul D. & Karlis, Dimitris, 2016. "Clustering with the multivariate normal inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 18-30.
    3. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    4. Branislav Panić & Marko Nagode & Jernej Klemenc & Simon Oman, 2022. "On Methods for Merging Mixture Model Components Suitable for Unsupervised Image Segmentation Tasks," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    5. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    6. Álvarez, Adolfo, 2013. "Recombining partitions via unimodality tests," DES - Working Papers. Statistics and Econometrics. WS ws130706, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "The power of monitoring: how to make the most of a contaminated multivariate sample," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 559-587, December.
    8. Donatella Vicari & Johan Ren� van Dorp, 2013. "On a bounded bimodal two-sided distribution fitted to the Old-Faithful geyser data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1965-1978, September.
    9. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    10. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    11. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    12. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    13. Ugo Fratesi & Giovanni Perucca, 2018. "Territorial capital and the resilience of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 241-264, March.
    14. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
    15. Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
    16. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    17. Marek Śmieja & Magdalena Wiercioch, 2017. "Constrained clustering with a complex cluster structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 493-518, September.
    18. Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
    19. Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
    20. De la Cruz-Mesia, Rolando & Quintana, Fernando A. & Marshall, Guillermo, 2008. "Model-based clustering for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1441-1457, January.
    21. Andrea Cerasa, 2016. "Combining homogeneous groups of preclassified observations with application to international trade," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 229-259, August.

    More about this item

    Keywords

    Cluster analysis;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws140804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.