IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws130706.html
   My bibliography  Save this paper

Recombining partitions via unimodality tests

Author

Listed:
  • Álvarez, Adolfo

Abstract

In this article we propose a recombination procedure for previously split data. It is basedon the study of modes in the density of the data, since departing from unimodality canbe a sign of the presence of clusters. We develop an algorithm that integrates a splitting process inherited from the SAR algorithm (Peña et al., 2004) with unimodality tests such as the dip test proposed by Hartigan and Hartigan (1985), and finally, we use anetwork configuration to visualize the results. We show that this can be a useful tool to detect heterogeneity in the data, but limited to univariate data because of the nature of the dip test. In a second stage we discuss the use of multivariate mode detection tests to avoid dimensionality reduction techniques such as projecting multivariate data into one dimension. The results of the application of multivariate unimodality tests show that is possible to detect the cluster structure of the data, although more research can be oriented to estimate the proper fine-tuning of some parameters of the test for a given dataset or distribution.

Suggested Citation

  • Álvarez, Adolfo, 2013. "Recombining partitions via unimodality tests," DES - Working Papers. Statistics and Econometrics. WS ws130706, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws130706
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/cb0afd3f-be7b-43c9-b4b5-7ffb8bddfba6/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David E. Tyler & Frank Critchley & Lutz Dümbgen & Hannu Oja, 2009. "Invariant co‐ordinate selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 549-592, June.
    2. Gregory Rozál & J. Hartigan, 1994. "The MAP test for multimodality," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 5-36, March.
    3. Burman, Prabir & Polonik, Wolfgang, 2009. "Multivariate mode hunting: Data analytic tools with measures of significance," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1198-1218, July.
    4. A. Azzalini & A.W. Bowman, 1990. "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(3), pages 357-365, November.
    5. Christian Hennig, 2010. "Methods for merging Gaussian mixture components," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(1), pages 3-34, April.
    6. P. M. Hartigan, 1985. "Computation of the Dip Statistic to Test for Unimodality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 320-325, November.
    7. J. Hartigan & Surya Mohanty, 1992. "The runt test for multimodality," Journal of Classification, Springer;The Classification Society, vol. 9(1), pages 63-70, January.
    8. Ahmed, Murat O. & Walther, Guenther, 2012. "Investigating the multimodality of multivariate data with principal curves," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4462-4469.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    2. Burman, Prabir & Polonik, Wolfgang, 2009. "Multivariate mode hunting: Data analytic tools with measures of significance," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1198-1218, July.
    3. Branislav Panić & Marko Nagode & Jernej Klemenc & Simon Oman, 2022. "On Methods for Merging Mixture Model Components Suitable for Unsupervised Image Segmentation Tasks," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    4. repec:cte:wsrepe:ws1450804 is not listed on IDEAS
    5. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    6. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire & McNicholas, Paul D. & Karlis, Dimitris, 2016. "Clustering with the multivariate normal inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 18-30.
    7. Gregory Rozál & J. Hartigan, 1994. "The MAP test for multimodality," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 5-36, March.
    8. Álvarez, Adolfo, 2014. "Recombining partitions from multivariate data: a clustering method on Bayes factors," DES - Working Papers. Statistics and Econometrics. WS ws140804, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Bock, Hans H., 1996. "Probabilistic models in cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 5-28, November.
    10. Giovanna Menardi, 2016. "A Review on Modal Clustering," International Statistical Review, International Statistical Institute, vol. 84(3), pages 413-433, December.
    11. Nicolae Tarbă & Mihai-Lucian Voncilă & Costin-Anton Boiangiu, 2022. "On Generalizing Sarle’s Bimodality Coefficient as a Path towards a Newly Composite Bimodality Coefficient," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    12. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    13. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    14. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    15. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    16. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    17. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    18. Suren Basov & Svetlana Danilkina & David Prentice, 2020. "When Does Variety Increase with Quality?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(3), pages 463-487, May.
    19. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    20. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
    21. Ilmonen, Pauliina, 2013. "On asymptotic properties of the scatter matrix based estimates for complex valued independent component analysis," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1219-1226.

    More about this item

    Keywords

    Dip test;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws130706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.