IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/we025620.html
   My bibliography  Save this paper

On the generic strategic stability of nash equilibria if voting is costly

Author

Abstract

We prove that for generic plurality games with positive cost of voting, the number of Nash equilibria is finite. Furthermore all the equilibria are regular, hence stable sets as singletons.

Suggested Citation

  • De Sinopoli, Francesco, 2002. "On the generic strategic stability of nash equilibria if voting is costly," UC3M Working papers. Economics we025620, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:we025620
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/781ee961-5c9e-40e6-a74a-049689bc7361/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. De Sinopoli, Francesco, 2001. "On the Generic Finiteness of Equilibrium Outcomes in Plurality Games," Games and Economic Behavior, Elsevier, vol. 34(2), pages 270-286, February.
    2. Blume, Lawrence E & Zame, William R, 1994. "The Algebraic Geometry of Perfect and Sequential Equilibrium," Econometrica, Econometric Society, vol. 62(4), pages 783-794, July.
    3. Jean-François Mertens, 1989. "Stable Equilibria---A Reformulation," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 575-625, November.
    4. MERTENS, Jean-François, 1989. "Stable equilibria - a reformulation. Part I. Definition and basic properties," LIDAM Reprints CORE 866, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Govindan, Srihari & McLennan, Andrew, 2001. "On the Generic Finiteness of Equilibrium Outcome Distributions in Game Forms," Econometrica, Econometric Society, vol. 69(2), pages 455-471, March.
    6. Marco A. Haan & Peter Kooreman, 2003. "How majorities can lose the election Another voting paradox," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 20(3), pages 509-522, June.
    7. Palfrey, Thomas R. & Rosenthal, Howard, 1985. "Voter Participation and Strategic Uncertainty," American Political Science Review, Cambridge University Press, vol. 79(1), pages 62-78, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pimienta, Carlos, 2009. "Generic determinacy of Nash equilibrium in network-formation games," Games and Economic Behavior, Elsevier, vol. 66(2), pages 920-927, July.
    2. Tasos Kalandrakis, 2007. "On participation games with complete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 35(3), pages 337-352, February.
    3. Tasos Kalandrakis, 2009. "Robust rational turnout," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 41(2), pages 317-343, November.
    4. Pimienta, Carlos, 2010. "Generic finiteness of outcome distributions for two-person game forms with three outcomes," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 364-365, May.
    5. De Sinopoli, F. & Iannantuoni, G., 2005. "On Asymmetric Behaviors if Voting is Costly," Cambridge Working Papers in Economics 0521, Faculty of Economics, University of Cambridge.
    6. De Sinopoli, Francesco & Pimienta, Carlos, 2010. "Costly network formation and regular equilibria," Games and Economic Behavior, Elsevier, vol. 69(2), pages 492-497, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meroni, Claudia & Pimienta, Carlos, 2017. "The structure of Nash equilibria in Poisson games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 128-144.
    2. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    3. Pimienta, Carlos, 2010. "Generic finiteness of outcome distributions for two-person game forms with three outcomes," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 364-365, May.
    4. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
    5. Pimienta, Carlos, 2009. "Generic determinacy of Nash equilibrium in network-formation games," Games and Economic Behavior, Elsevier, vol. 66(2), pages 920-927, July.
    6. Srihari Govindan & Robert Wilson, 2008. "Metastable Equilibria," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 787-820, November.
    7. Govindan, Srihari & Wilson, Robert B., 2007. "Stable Outcomes of Generic Games in Extensive Form," Research Papers 1933r, Stanford University, Graduate School of Business.
    8. Alós-Ferrer, Carlos, 2022. "The Trembling Chairman Paradox," Games and Economic Behavior, Elsevier, vol. 131(C), pages 51-56.
    9. Yukio KORIYAMA & Matias Nunez, 2014. "Hybrid Procedures," THEMA Working Papers 2014-02, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    10. DE SINOPOLI, Francesco, 1999. "Further remarks on strategic stability in plurality games," LIDAM Discussion Papers CORE 1999030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
    12. De Sinopoli, Francesco, 2004. "A note on forward induction in a model of representative democracy," Games and Economic Behavior, Elsevier, vol. 46(1), pages 41-54, January.
    13. Francesco De Sinopoli & Leo Ferraris & Giovanna Iannantuoni, 2013. "Electing a parliament," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 715-737, March.
    14. De Sinopoli, Francesco & Pimienta, Carlos, 2010. "Costly network formation and regular equilibria," Games and Economic Behavior, Elsevier, vol. 69(2), pages 492-497, July.
    15. Amanda Friedenberg, 2006. "Can Hidden Variables Explain Correlation? (joint with Adam Brandenburger)," Theory workshop papers 815595000000000005, UCLA Department of Economics.
    16. Govindan, Srihari & Wilson, Robert B., 2008. "Axiomatic Theory of Equilibrium Selection in Signaling Games with Generic Payoffs," Research Papers 2000, Stanford University, Graduate School of Business.
    17. Bich, Philippe & Fixary, Julien, 2022. "Network formation and pairwise stability: A new oddness theorem," Journal of Mathematical Economics, Elsevier, vol. 103(C).
    18. Srihari Govindan & Robert Wilson, 2012. "Axiomatic Equilibrium Selection for Generic Two‐Player Games," Econometrica, Econometric Society, vol. 80(4), pages 1639-1699, July.
    19. Philippe Bich & Julien Fixary, 2021. "Structure and oddness theorems for pairwise stable networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03287524, HAL.
    20. Kleppe, John & Borm, Peter & Hendrickx, Ruud, 2012. "Fall back equilibrium," European Journal of Operational Research, Elsevier, vol. 223(2), pages 372-379.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we025620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.