IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/62161700-7266-4768-9d90-4edbef3e4611.html
   My bibliography  Save this paper

Fall Back Equilibrium

Author

Listed:
  • Kleppe, J.

    (Tilburg University, Center For Economic Research)

  • Borm, P.E.M.

    (Tilburg University, Center For Economic Research)

  • Hendrickx, R.L.P.

    (Tilburg University, Center For Economic Research)

Abstract

Fall back equilibrium is a refinement of the Nash equilibrium concept. In the underlying thought experiment each player faces the possibility that, after all players decided on their action, his chosen action turns out to be blocked. Therefore, each player has to decide beforehand on a back-up action, which he plays in case he is unable to play his primary action.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kleppe, J. & Borm, P.E.M. & Hendrickx, R.L.P., 2008. "Fall Back Equilibrium," Discussion Paper 2008-31, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:62161700-7266-4768-9d90-4edbef3e4611
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/962708/2008-31.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean-François Mertens, 1989. "Stable Equilibria---A Reformulation," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 575-625, November.
    2. MERTENS, Jean-François, 1989. "Stable equilibria - a reformulation. Part I. Definition and basic properties," LIDAM Reprints CORE 866, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    4. Borm, P.E.M., 1992. "On perfectness concepts for bimatrix games," Other publications TiSEM 9652c2b4-b09f-4c05-846a-3, Tilburg University, School of Economics and Management.
    5. MERTENS, Jean-François, 1991. "Stable equilibria - a reformulation. Part II. Discussion of the definition, and further results," LIDAM Reprints CORE 960, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Jansen, Mathijs, 1993. "On the Set of Proper Equilibria of a Bimatrix Game," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(2), pages 97-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Kleppe & Peter Borm & Ruud Hendrickx, 2017. "Fall back proper equilibrium," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 402-412, July.
    2. John Kleppe & Peter Borm & Ruud Hendrickx, 2013. "Fall back equilibrium for $$2 \times n$$ bimatrix games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 171-186, October.
    3. van Beek, Andries, 2023. "Solutions in multi-actor projects with collaboration and strategic incentives," Other publications TiSEM 3739c498-5edb-442f-87d8-c, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    2. Govindan, Srihari & Wilson, Robert B., 2008. "Axiomatic Theory of Equilibrium Selection in Signaling Games with Generic Payoffs," Research Papers 2000, Stanford University, Graduate School of Business.
    3. Srihari Govindan & Robert Wilson, 2012. "Axiomatic Equilibrium Selection for Generic Two‐Player Games," Econometrica, Econometric Society, vol. 80(4), pages 1639-1699, July.
    4. John Hillas & Mathijs Jansen & Jos Potters & Dries Vermeulen, 2001. "On the Relation Among Some Definitions of Strategic Stability," Mathematics of Operations Research, INFORMS, vol. 26(3), pages 611-635, August.
    5. Anesi, Vincent, 2010. "Noncooperative foundations of stable sets in voting games," Games and Economic Behavior, Elsevier, vol. 70(2), pages 488-493, November.
    6. Srihari Govindan & Robert Wilson, 2008. "Metastable Equilibria," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 787-820, November.
    7. Vida, Péter & Honryo, Takakazu, 2021. "Strategic stability of equilibria in multi-sender signaling games," Games and Economic Behavior, Elsevier, vol. 127(C), pages 102-112.
    8. Alós-Ferrer, Carlos, 2022. "The Trembling Chairman Paradox," Games and Economic Behavior, Elsevier, vol. 131(C), pages 51-56.
    9. Ohnishi, Kazuhiro, 2018. "Non-Altruistic Equilibria," MPRA Paper 88347, University Library of Munich, Germany.
    10. Norman, Thomas W.L., 2018. "Inefficient stage Nash is not stable," Journal of Economic Theory, Elsevier, vol. 178(C), pages 275-293.
    11. Meroni, Claudia & Pimienta, Carlos, 2017. "The structure of Nash equilibria in Poisson games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 128-144.
    12. Govindan, Srihari & Wilson, Robert B., 2007. "Stable Outcomes of Generic Games in Extensive Form," Research Papers 1933r, Stanford University, Graduate School of Business.
    13. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
    14. De Sinopoli, Francesco, 2004. "A note on forward induction in a model of representative democracy," Games and Economic Behavior, Elsevier, vol. 46(1), pages 41-54, January.
    15. Bajoori, Elnaz & Flesch, János & Vermeulen, Dries, 2016. "Behavioral perfect equilibrium in Bayesian games," Games and Economic Behavior, Elsevier, vol. 98(C), pages 78-109.
    16. Francesco De Sinopoli & Leo Ferraris & Giovanna Iannantuoni, 2013. "Electing a parliament," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 715-737, March.
    17. Satoru Takahashi, 2020. "Non-equivalence between all and canonical elaborations," The Japanese Economic Review, Springer, vol. 71(1), pages 43-57, January.
    18. GRIGIS DE STEFANO, Federico, 2014. "Strategic stability of equilibria: the missing paragraph," LIDAM Discussion Papers CORE 2014015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Amanda Friedenberg, 2006. "Can Hidden Variables Explain Correlation? (joint with Adam Brandenburger)," Theory workshop papers 815595000000000005, UCLA Department of Economics.
    20. Carlos Alós-Ferrer & Klaus Ritzberger, 2020. "Reduced normal forms are not extensive forms," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 281-288, October.

    More about this item

    Keywords

    strategic game; equilibrium refinement; blocked action; fall back equilibrium;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:62161700-7266-4768-9d90-4edbef3e4611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.