IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2010-33.html
   My bibliography  Save this paper

Free Energy Methods for Efficient Exploration of Mixture Posterior Densities

Author

Listed:
  • Nicolas Chopin

    (Crest)

  • Tony Lelievre

    (Crest)

  • Gabriel Stoltz

    (Crest)

Abstract

Because of their multimodality, mixture posterior densities are difficult to sample withstandard Markov chain Monte Carlo (MCMC) methods. We propose a strategy to enhancethe sampling of MCMC in this context, using a biasing procedure which originates fromcomputational statistical physics. The principle is first to choose a "reaction coordinate",that is, a direction in which the target density is multimodal. In a second step, the marginallog-density of the reaction coordinate is estimated; this quantity is called "free energy" inthe computational statistical physics literature. To this end, we use adaptive biasing Markovchain algorithms which adapt their invariant distribution on the fly, in order to overcomesampling barriers along the chosen reaction coordinate. Finally, we perform an importancesampling step in order to remove the bias and recover the true posterior. The efficiency factorcan easily be estimated a priori once the bias is known, and is large enough for the test caseswe considered.A crucial point is the choice of the reaction coordinate. One standard choice (used forexample in the classical Wang-Landau algorithm) is the opposite of the log-posterior density.We show that another convenient and efficient reaction coordinate is the hyper-parameterthat determines the order of magnitude of the variance of each component. We also showhow to adapt the method to perform model choice between different number of components.We illustrate our approach by analyzing two real data sets.

Suggested Citation

  • Nicolas Chopin & Tony Lelievre & Gabriel Stoltz, 2010. "Free Energy Methods for Efficient Exploration of Mixture Posterior Densities," Working Papers 2010-33, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2010-33
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2010-33.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    2. repec:dau:papers:123456789/1906 is not listed on IDEAS
    3. Yukito Iba, 2001. "Extended Ensemble Monte Carlo," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 623-656.
    4. K. E. Basford & G. J. Mclachlan & M. G. York, 1997. "Modelling the distribution of stamp paper thickness via finite normal mixtures: The 1872 Hidalgo stamp issue of Mexico revisited," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(2), pages 169-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Chopin & Pierre Jacob, 2010. "Free Energy Sequential Monte Carlo Application to Mixture Modelling," Working Papers 2010-34, Center for Research in Economics and Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zdravko I. Botev & Dirk P. Kroese, 2011. "The Generalized Cross Entropy Method, with Applications to Probability Density Estimation," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 1-27, March.
    2. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    3. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    4. Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.
    5. Fisher, Mark & Jensen, Mark J., 2022. "Bayesian nonparametric learning of how skill is distributed across the mutual fund industry," Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
    6. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    7. N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
    8. Ungolo, Francesco & Kleinow, Torsten & Macdonald, Angus S., 2020. "A hierarchical model for the joint mortality analysis of pension scheme data with missing covariates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 68-84.
    9. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    10. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    11. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    12. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    13. Wu, C.C. & Lee, Jack C., 2007. "Estimation of a utility-based asset pricing model using normal mixture GARCH(1,1)," Economic Modelling, Elsevier, vol. 24(2), pages 329-349, March.
    14. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    15. Kato, Kensuke, 2016. "Long-range Ising model for credit portfolios with heterogeneous credit exposures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1103-1119.
    16. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    17. Francisco Richter & Bart Haegeman & Rampal S. Etienne & Ernst C. Wit, 2020. "Introducing a general class of species diversification models for phylogenetic trees," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 261-274, August.
    18. Nalini Ravishanker & Dipak K. Dey, 2000. "Multivariate Survival Models with a Mixture of Positive Stable Frailties," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 293-308, September.
    19. Kozumi, Hideo, 2004. "Posterior analysis of latent competing risk models by parallel tempering," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 441-458, June.
    20. Yasutomo Murasawa, 2020. "Measuring public inflation perceptions and expectations in the UK," Empirical Economics, Springer, vol. 59(1), pages 315-344, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2010-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.