IDEAS home Printed from https://ideas.repec.org/p/cqe/wpaper/7018.html
   My bibliography  Save this paper

Randomized Quasi Sequential Markov Chain Monte Carlo²

Author

Listed:
  • Fabian Goessling

Abstract

Sequential Monte Carlo and Markov Chain Monte Carlo methods are combined into a unifying framework for Bayesian parameter inference in non-linear, non-Gaussian state space models. A variety of tuning approaches are suggested to boost convergence: likelihood tempering, data tempering, adaptive proposals, random blocking, and randomized Quasi Monte Carlo numbers. The methods are illustrated and compared by running eight variants of the algorithm to estimate the parameters of a standard stochastic volatility model.

Suggested Citation

  • Fabian Goessling, 2018. "Randomized Quasi Sequential Markov Chain Monte Carlo²," CQE Working Papers 7018, Center for Quantitative Economics (CQE), University of Muenster.
  • Handle: RePEc:cqe:wpaper:7018
    as

    Download full text from publisher

    File URL: https://www.wiwi.uni-muenster.de/cqe/sites/cqe/files/CQE_Paper/cqe_wp_70_2018.pdf
    File Function: Version of February 2018
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin-Chuan Duan & Andras Fulop, 2015. "Density-Tempered Marginalized Sequential Monte Carlo Samplers," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 192-202, April.
    2. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    3. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    4. Mathieu Gerber & Nicolas Chopin, 2015. "Sequential quasi Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 509-579, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Goessling, 2018. "Human Capital, Growth, and Asset Prices," CQE Working Papers 6918, Center for Quantitative Economics (CQE), University of Muenster.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Jin-Chuan & Fulop, Andras & Hsieh, Yu-Wei, 2020. "Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    2. Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
    3. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    4. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    5. Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
    6. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    7. Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
    8. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
    9. Wolf, Elias, 2023. "Estimating Growth at Risk with Skewed Stochastic Volatility Models," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277696, Verein für Socialpolitik / German Economic Association.
    10. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    11. Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
    12. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    13. Crucinio, Francesca R. & Johansen, Adam M., 2023. "Properties of marginal sequential Monte Carlo methods," Statistics & Probability Letters, Elsevier, vol. 203(C).
    14. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    15. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    16. Burkhart, Michael C., 2019. "A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding," Thesis Commons 4j3fu, Center for Open Science.
    17. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    18. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    19. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    20. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.

    More about this item

    Keywords

    SMC; MCMC; Bayesian Estimation; Filtering;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cqe:wpaper:7018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susanne Deckwitz (email available below). General contact details of provider: https://edirc.repec.org/data/cqmuede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.