IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2757.html
   My bibliography  Save this paper

Higher Education Value Added Using Multiple Outcomes

Author

Listed:
  • Joniada MILLA
  • Ernesto SAN MARTIN
  • Sébastien VAN BELLEGEM

Abstract

We build a multidimensional value added model to analyze jointly the test scores on several outcomes. Using a unique Colombian data set on higher education within a seemingly unrelated regression equations (SURE) framework we estimate school outcome specific value added indicators. These are used to measure the relative contribution of the school on a certain outcome, which may serve as an internal accountability measure. Apart from the evident estimation efficiency gains, a joint value added analysis is preferable to the unidimensional one. First, unless modeled in a multidimensional framework, the comparison of value added estimates for different outcomes within a school is not well defined; our model circumvents this issue. Second, even in the case of a separate major field of study analysis there still exists unobserved heterogeneity due to institutional diversity. This makes it more compelling to employ a rich set of outcomes in computing value added indicators. In the end, we aggregate the outcome-specific value added estimates to produce a composite value added index that reflects the combined value added contribution of all the subjects for each school.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Joniada MILLA & Ernesto SAN MARTIN & Sébastien VAN BELLEGEM, 2016. "Higher Education Value Added Using Multiple Outcomes," LIDAM Reprints CORE 2757, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2757
    Note: In : Journal of Educational Measurement, 53, 368-400, 2016
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raj Chetty & John N. Friedman & Jonah E. Rockoff, 2014. "Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates," American Economic Review, American Economic Association, vol. 104(9), pages 2593-2632, September.
    2. Michael David Bates & Katherine E. Castellano & Sophia Rabe-Hesketh & Anders Skrondal, 2014. "Handling Correlations Between Covariates and Random Slopes in Multilevel Models," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 524-549, December.
    3. Andrew Bacher-Hicks & Thomas J. Kane & Douglas O. Staiger, 2014. "Validating Teacher Effect Estimates Using Changes in Teacher Assignments in Los Angeles," NBER Working Papers 20657, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garritt L. Page & Ernesto San Martín & Javiera Orellana & Jorge González, 2017. "Exploring complete school effectiveness via quantile value added," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 315-340, January.
    2. Cláudia Lessa & Arnaldo Coelho, 2024. "Building Trust in Higher Education Institutions: Using Congruence to Overcome Scepticism and Increase Credibility, Reputation, and Student Employability Through CSR," Corporate Reputation Review, Palgrave Macmillan, vol. 27(1), pages 18-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Nagler & Marc Piopiunik & Martin R. West, 2020. "Weak Markets, Strong Teachers: Recession at Career Start and Teacher Effectiveness," Journal of Labor Economics, University of Chicago Press, vol. 38(2), pages 453-500.
    2. Canales, Andrea & Maldonado, Luis, 2018. "Teacher quality and student achievement in Chile: Linking teachers' contribution and observable characteristics," International Journal of Educational Development, Elsevier, vol. 60(C), pages 33-50.
    3. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    4. Bruhn, Jesse & Imberman, Scott & Winters, Marcus, 2022. "Regulatory arbitrage in teacher hiring and retention: Evidence from Massachusetts Charter Schools," Journal of Public Economics, Elsevier, vol. 215(C).
    5. Chetty, Raj & Friedman, John & Rockoff, Jonah, 2015. "Measuring the Impacts of Teachers: Response to Rothstein (2014)," CEPR Discussion Papers 10768, C.E.P.R. Discussion Papers.
    6. Naven, Matthew, 2019. "Human-Capital Formation During Childhood and Adolescence: Evidence from School Quality and Postsecondary Success in California," MPRA Paper 97716, University Library of Munich, Germany.
    7. Julie Berry Cullen & Cory Koedel & Eric Parsons, 2021. "The Compositional Effect of Rigorous Teacher Evaluation on Workforce Quality," Education Finance and Policy, MIT Press, vol. 16(1), pages 7-41, Winter.
    8. Eric Parsons & Cory Koedel & Li Tan, 2019. "Accounting for Student Disadvantage in Value-Added Models," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 144-179, April.
    9. David Blazar, 2018. "Validating Teacher Effects on Students’ Attitudes and Behaviors: Evidence from Random Assignment of Teachers to Students," Education Finance and Policy, MIT Press, vol. 13(3), pages 281-309, Summer.
    10. Renata Lemos & Karthik Muralidharan & Daniela Scur, 2024. "Personnel Management and School Productivity: Evidence from India," The Economic Journal, Royal Economic Society, vol. 134(661), pages 2071-2100.
    11. Santiago Pereda Fernández, 2016. "A new method for the correction of test scores manipulation," Temi di discussione (Economic working papers) 1047, Bank of Italy, Economic Research and International Relations Area.
    12. Hermann, Zoltán & Horváth, Hedvig, 2022. "Tanári eredményesség és tanár-diák összepárosítás az általános iskolákban. Empirikus mintázatok három magyarországi tankerület adatai alapján [Teacher effectiveness and teacher-student matching in ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1377-1406.
    13. Dan Goldhaber & Cyrus Grout & Nick Huntington-Klein, 2017. "Screen Twice, Cut Once: Assessing the Predictive Validity of Applicant Selection Tools," Education Finance and Policy, MIT Press, vol. 12(2), pages 197-223, Spring.
    14. Godstime Osekhebhen Eigbiremolen, 2020. "Estimating Private School Premium for Primary School Children in Ethiopia: Evidence from Individual-level Panel Data," Progress in Development Studies, , vol. 20(1), pages 26-44, January.
    15. Evan Riehl & Meredith Welch, 2023. "Accountability, Test Prep Incentives, and the Design of Math and English Exams," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 42(1), pages 60-96, January.
    16. Tom Ahn & Esteban Aucejo & Jonathan James, 2021. "The Importance of Matching Effects for Labor Productivity: Evidence from Teacher-Student Interactions," Working Papers 2106, California Polytechnic State University, Department of Economics.
    17. Jesse Rothstein, 2017. "Measuring the Impacts of Teachers: Comment," American Economic Review, American Economic Association, vol. 107(6), pages 1656-1684, June.
    18. Backes, Ben & Goldhaber, Dan & Cade, Whitney & Sullivan, Kate & Dodson, Melissa, 2018. "Can UTeach? Assessing the relative effectiveness of STEM teachers," Economics of Education Review, Elsevier, vol. 64(C), pages 184-198.
    19. Andrew Bacher-Hicks & Mark J. Chin & Thomas J. Kane & Douglas O. Staiger, 2017. "An Evaluation of Bias in Three Measures of Teacher Quality: Value-Added, Classroom Observations, and Student Surveys," NBER Working Papers 23478, National Bureau of Economic Research, Inc.
    20. Lee Crawfurd & Caine Rolleston, 2020. "Long‐run effects of teachers in developing countries," Review of Development Economics, Wiley Blackwell, vol. 24(4), pages 1279-1299, November.

    More about this item

    JEL classification:

    • I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions
    • A22 - General Economics and Teaching - - Economic Education and Teaching of Economics - - - Undergraduate
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.