IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v176y2023ics0960077923010457.html
   My bibliography  Save this article

A spatial branch-reduction-bound algorithm for solving generalized linear fractional problems globally

Author

Listed:
  • Hou, Zhisong
  • Liu, Sanyang

Abstract

In various engineering applications, the generalized linear fractional problem (GLFP) is an essential model that has many challenges in both theoretical and practical aspects. Therefore, the main work of this paper is to design an effective spatial algorithm for solving the GLFP efficiently. We start with equivalently converting the GLFP into an equivalent problem (EP) by transforming each fractional equation into one new variable. Next, applying the second-order cone relaxation to the constraint functions and executing a double-layer relaxation on the objective function of the EP, the second-order cone relaxed problem is constructed to underestimate the EP. Then, integrating some region reduction methods, we implement a spatial branch-reduction-bound algorithm. Furthermore, we verified the convergence of the proposed algorithm. Equally important, the maximum iterations of the proposed algorithm in the worst scenario are evaluated by the complexity analysis of the proposed algorithm. Finally, by comparing some algorithms in the current literature, numerical results confirm the feasibility, robustness, and efficiency of the proposed algorithm.

Suggested Citation

  • Hou, Zhisong & Liu, Sanyang, 2023. "A spatial branch-reduction-bound algorithm for solving generalized linear fractional problems globally," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010457
    DOI: 10.1016/j.chaos.2023.114144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923010457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Hong-Wei & Liu, San-Yang, 2015. "A practicable branch and bound algorithm for sum of linear ratios problem," European Journal of Operational Research, Elsevier, vol. 243(3), pages 723-730.
    2. Nesterov, Y. & Nemirovskii, A., 1995. "An interior-point method for generalized linear-fractional programming," LIDAM Reprints CORE 1168, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. X. Liu & Y.L. Gao & B. Zhang & F.P. Tian, 2019. "A New Global Optimization Algorithm for a Class of Linear Fractional Programming," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    4. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Bingdi & Shen, Peiping, 2024. "An efficient branch and bound reduction algorithm for globally solving linear fractional programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    2. Jiao, Hongwei & Ma, Junqiao, 2022. "An efficient algorithm and complexity result for solving the sum of general affine ratios problem," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Chen, Kun & Zhu, Joe, 2020. "Additive slacks-based measure: Computational strategy and extension to network DEA," Omega, Elsevier, vol. 91(C).
    4. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    5. Huang, Bingdi & Shen, Peiping, 2024. "An efficient branch and bound reduction algorithm for globally solving linear fractional programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    7. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    8. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    9. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    10. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    11. Hongwei Jiao & Binbin Li & Wenqiang Yang, 2024. "A criterion-space branch-reduction-bound algorithm for solving generalized multiplicative problems," Journal of Global Optimization, Springer, vol. 89(3), pages 597-632, July.
    12. Johannes König & Carsten Schröder, 2018. "Inequality-minimization with a given public budget," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 607-629, December.
    13. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    14. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    15. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    16. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    18. Richard S. Barr & Kory A. Killgo & Thomas F. Siems & Sheri Zimmel, 1999. "Evaluating the productive efficiency and performance of U.S. commercial banks," Financial Industry Studies Working Paper 99-3, Federal Reserve Bank of Dallas.
    19. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    20. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.