IDEAS home Printed from https://ideas.repec.org/a/fau/fauart/v56y2006i5-6p223-245.html
   My bibliography  Save this article

Trading Intensity and Intraday Volatility on the Prague Stock Exchange: Evidence from an Autoregressive Conditional Duration Model (in English)

Author

Listed:
  • Filip Zikes

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague)

  • Vít Bubák

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague)

Abstract

Using trade and quote data from the Prague Stock Exchange, this study investigates the empirical behavior of price durations defined as the time needed for a quote midpoint to move by a given amount. Focusing on the three most liquid securities traded on the exchange – Cesky Telecom, CEZ, and Komercni banka – the authors estimate autoregressive conditional duration (ACD) models for price-duration series and test several market-microstructure hypotheses suggested by the information-based models of market microstructure. Similar to earlier studies, the authors find that price durations exhibit diurnal patterns, overdispersion, and substantial persistence, which can be adequately captured by the ACD model. The market-microstructure hypotheses, however, find little empirical support in the authors´ results.

Suggested Citation

  • Filip Zikes & Vít Bubák, 2006. "Trading Intensity and Intraday Volatility on the Prague Stock Exchange: Evidence from an Autoregressive Conditional Duration Model (in English)," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(5-6), pages 223-245, May.
  • Handle: RePEc:fau:fauart:v:56:y:2006:i:5-6:p:223-245
    as

    Download full text from publisher

    File URL: http://journal.fsv.cuni.cz/storage/1055_s_223_245.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stoll, Hans R, 1978. "The Supply of Dealer Services in Securities Markets," Journal of Finance, American Finance Association, vol. 33(4), pages 1133-1151, September.
    2. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    3. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    4. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    5. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    6. Easley, David & Kiefer, Nicholas M & O'Hara, Maureen, 1997. "One Day in the Life of a Very Common Stock," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 805-835.
    7. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    8. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    9. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    10. McInish, Thomas H & Wood, Robert A, 1992. "An Analysis of Intraday Patterns in Bid/Ask Spreads for NYSE Stocks," Journal of Finance, American Finance Association, vol. 47(2), pages 753-764, June.
    11. GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," LIDAM Discussion Papers CORE 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Hanousek, Jan & Podpiera, Richard, 2004. "Czech experience with market maker trading system," Economic Systems, Elsevier, vol. 28(2), pages 177-191, June.
    13. Hanousek, Jan & Podpiera, Richard, 2003. "Informed trading and the bid-ask spread: evidence from an emerging market," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 275-296, June.
    14. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
    2. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    3. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    4. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    5. Wong, Woon K. & Tan, Dijun & Tian, Yixiang, 2009. "Informed trading and liquidity in the Shanghai Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 66-73, March.
    6. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).
    7. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," LIDAM Discussion Papers CORE 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    9. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    10. Nowak, Sylwia & Anderson, Heather M., 2014. "How does public information affect the frequency of trading in airline stocks?," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 26-38.
    11. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    12. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    13. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    14. Mazza, Paolo, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
    15. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    16. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    17. Mengyu Zhang & Thanos Verousis & Iordanis Kalaitzoglou, 2022. "Information and the arrival rate of option trading volume," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 605-644, April.
    18. Engle, Robert F. & Patton, Andrew J., 2004. "Impacts of trades in an error-correction model of quote prices," Journal of Financial Markets, Elsevier, vol. 7(1), pages 1-25, January.
    19. Ping-Chen Tsai & Chi-Ming Tsai, 2021. "Estimating the proportion of informed and speculative traders in financial markets: evidence from exchange rate," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 443-470, July.
    20. Cosmin Octavian Cepoi & Filip Mihai Toma, 2016. "Estimating Probability of Informed Trading on the Bucharest Stock Exchange," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(2), pages 140-160, April.
    21. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.

    More about this item

    Keywords

    autoregressive conditional duration; instantaneous volatility; market microstructure;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:fauart:v:56:y:2006:i:5-6:p:223-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.