IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v30y2006i4p867-887.html
   My bibliography  Save this article

How large is liquidity risk in an automated auction market?

Author

Listed:
  • Pierre Giot
  • Joachim Grammig

Abstract

We introduce a new empirical methodology that takes account of liquidity risk in a Value-at-Risk framework, and quantify liquidity risk premiums for portfolios and individual stocks traded on the automated auction market Xetra which operates at various European exchanges. When constructing liquidity risk measures we allow for the potential price impact incurred by the liquidation of a portfolio. We study the sensitivity of liquidity risk towards portfolio size and VaR time horizon, and interpret its diurnal variation in the light of market microstructure theory.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Pierre Giot & Joachim Grammig, 2006. "How large is liquidity risk in an automated auction market?," Empirical Economics, Springer, vol. 30(4), pages 867-887, January.
  • Handle: RePEc:spr:empeco:v:30:y:2006:i:4:p:867-887
    DOI: 10.1007/s00181-005-0003-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-005-0003-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-005-0003-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Helena, BELTRAN & Alain, DURRE & Pierre, GIOT, 2004. "Volatility regimes and the provisions of liquidity in order book markets," Discussion Papers (ECON - Département des Sciences Economiques) 2005015, Université catholique de Louvain, Département des Sciences Economiques.
    2. Anil Bangia & Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Modeling Liquidity Risk With Implications for Traditional Market Risk Measurement and Management," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-062, New York University, Leonard N. Stern School of Business-.
    3. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    4. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    5. Martin Martens & Yuan‐Chen Chang & Stephen J. Taylor, 2002. "A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 283-299, June.
    6. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    7. Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999. "Intra-day market activity," Journal of Financial Markets, Elsevier, vol. 2(3), pages 193-226, August.
    8. GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," LIDAM Discussion Papers CORE 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Handa, Puneet & Schwartz, Robert A, 1996. "Limit Order Trading," Journal of Finance, American Finance Association, vol. 51(5), pages 1835-1861, December.
    10. Ajay Subramanian & Robert A. Jarrow, 2001. "The Liquidity Discount," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 447-474, October.
    11. Magdalena E. Sokalska & Ananda Chanda & Robert F. Engle, 2005. "High Frequency Multiplicative Component Garch," Computing in Economics and Finance 2005 409, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Großmaß Lidan, 2014. "Liquidity and the Value at Risk," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(5), pages 572-602, October.
    2. Dionne, Georges & Zhou, Xiaozhou, 2016. "The Dynamics of Ex-ante High-Frequency Liquidity: An Empirical Analysis," Working Papers 15-5, HEC Montreal, Canada Research Chair in Risk Management.
    3. Theo Berger & Christina Uffmann, 2021. "Assessing liquidity‐adjusted risk forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1179-1189, November.
    4. Wang, Keli & Liu, Xiaoquan & Ye, Wuyi, 2023. "Intraday VaR: A copula-based approach," Journal of Empirical Finance, Elsevier, vol. 74(C).
    5. Peter Gomber & Uwe Schweickert & Erik Theissen, 2015. "Liquidity Dynamics in an Electronic Open Limit Order Book: an Event Study Approach," European Financial Management, European Financial Management Association, vol. 21(1), pages 52-78, January.
    6. Ernst, Cornelia & Stange, Sebastian & Kaserer, Christoph, 2012. "Measuring market liquidity risk - which model works best?," Journal of Financial Transformation, Capco Institute, vol. 35, pages 133-146.
    7. Holmberg, Ulf, 2012. "Essays on Credit Markets and Banking," Umeå Economic Studies 840, Umeå University, Department of Economics.
    8. Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
    9. Héléna Beltran-Lopez & Pierre Giot & Joachim Grammig, 2009. "Commonalities in the order book," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(3), pages 209-242, September.
    10. Rouetbi Emnal & Mamoghli Chokri, 2014. "Measuring Liquidity Risk in an Emerging Market: Liquidity Adjusted Value at Risk Approach for High Frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 4(1), pages 40-53.
    11. Georges Dionne & Xiaozhou Zhou, 2020. "The dynamics of ex-ante weighted spread: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 593-617, April.
    12. Lönnbark, Carl & Holmberg, Ulf & Brännäs, Kurt, 2011. "Value at Risk and Expected Shortfall for large portfolios," Finance Research Letters, Elsevier, vol. 8(2), pages 59-68, June.
    13. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    14. Levent C. Uslu & Burak Evre, 2017. "Liquidity Adjusted Value At Risk: Integrating The Uncertainty In Depth And Tightness," Eurasian Journal of Business and Management, Eurasian Publications, vol. 5(1), pages 55-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Großmaß Lidan, 2014. "Liquidity and the Value at Risk," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(5), pages 572-602, October.
    2. Menkhoff, Lukas & Osler, Carol L. & Schmeling, Maik, 2010. "Limit-order submission strategies under asymmetric information," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2665-2677, November.
    3. Kalaitzoglou, Iordanis Angelos & Ibrahim, Boulis Maher, 2023. "Market conditions and order-type preference," International Review of Financial Analysis, Elsevier, vol. 87(C).
    4. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    5. Ferriani, Fabrizio, 2010. "Informed and uninformed traders at work: evidence from the French market," MPRA Paper 24487, University Library of Munich, Germany.
    6. GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," LIDAM Discussion Papers CORE 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
    8. Baruch, Shmuel & Panayides, Marios & Venkataraman, Kumar, 2017. "Informed trading and price discovery before corporate events," Journal of Financial Economics, Elsevier, vol. 125(3), pages 561-588.
    9. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    10. Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
    11. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    12. Min-Hsien Chiang & Tsai-Yin Lin & Chih-Hsien Jerry Yu, 2009. "Liquidity Provision of Limit Order Trading in the Futures Market Under Bull and Bear Markets," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(7-8), pages 1007-1038.
    13. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    14. Yang, Joey Wenling, 2011. "Transaction duration and asymmetric price impact of trades--Evidence from Australia," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 91-102, January.
    15. Helena, BELTRAN & Alain, DURRE & Pierre, GIOT, 2004. "Volatility regimes and the provisions of liquidity in order book markets," Discussion Papers (ECON - Département des Sciences Economiques) 2005015, Université catholique de Louvain, Département des Sciences Economiques.
    16. Bien, Katarzyna & Nolte, Ingmar & Pohlmeier, Winfried, 2006. "Estimating liquidity using information on the multivariate trading process," CoFE Discussion Papers 06/04, University of Konstanz, Center of Finance and Econometrics (CoFE).
    17. Jedrzej Bialkowski & Serge Darolles & Gaëlle Le Fol, 2005. "Decomposing Volume for VWAP Strategies," Working Papers 2005-16, Center for Research in Economics and Statistics.
    18. Katarzyna Bien-Barkowska, 2011. "Distribution Choice for the Asymmetric ACD Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 55-72.
    19. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    20. Anthony D. Hall & Nikolaus Hautsch, 2004. "A Continuous-Time Measurement of the Buy-Sell Pressure in a Limit Order Book Market," FRU Working Papers 2004/03, University of Copenhagen. Department of Economics. Finance Research Unit.
    21. Zeynep Cobandag Guloglu & Cumhur Ekinci, 2022. "Liquidity measurement: A comparative review of the literature with a focus on high frequency," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 41-74, February.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:30:y:2006:i:4:p:867-887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.