IDEAS home Printed from https://ideas.repec.org/p/col/000094/011570.html
   My bibliography  Save this paper

Estimación de la demanda de vehículos nuevos de los hogares colombianos entre 2001 y 2011

Author

Listed:
  • Juan Esteban Carranza
  • Alejandra Ximena González

Abstract

El objetivo de este documento es evaluar el efecto de los impuestos, la tasa de cambio y el ingreso de los hogares en la demanda colombiana de carros nuevos entre 2001 y 2011. Durante este periodo las ventas de vehículos se incrementaron y la composición de las ventas cambió sustancialmente. Nuestro análisis está basado en la estimación de un sistema de demanda que utilizamos para evaluar el efecto que tuvo la reforma tributaria de 2006, en la cual se modificó el IVA de los vehículos de distintos tipos, y el efecto que habrían tenido cambios en la tasa de cambio y en el ingreso. Los resultados sugieren que la reforma tributaria y los cambios en la tasa de cambio tuvieron poco efecto sobre la demanda agregada, mientras que el ingreso tuvo un efecto significativamente mayor.

Suggested Citation

  • Juan Esteban Carranza & Alejandra Ximena González, 2014. "Estimación de la demanda de vehículos nuevos de los hogares colombianos entre 2001 y 2011," Borradores de Economia 11570, Banco de la Republica.
  • Handle: RePEc:col:000094:011570
    as

    Download full text from publisher

    File URL: http://www.banrep.gov.co/sites/default/files/publicaciones/archivos/be_824.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    2. Robert C. Feenstra & James A. Levinsohn, 1995. "Estimating Markups and Market Conduct with Multidimensional Product Attributes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 19-52.
    3. Amil Petrin, 2002. "Quantifying the Benefits of New Products: The Case of the Minivan," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 705-729, August.
    4. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    5. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    6. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    7. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-784, July.
    8. Tovar, Jorge, 2012. "Consumers’ Welfare and Trade Liberalization: Evidence from the Car Industry in Colombia," World Development, Elsevier, vol. 40(4), pages 808-820.
    9. Laura Grigolon & Frank Verboven, 2014. "Nested Logit or Random Coefficients Logit? A Comparison of Alternative Discrete Choice Models of Product Differentiation," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 916-935, December.
    10. Goldberg, Pinelopi Koujianou, 1995. "Product Differentiation and Oligopoly in International Markets: The Case of the U.S. Automobile Industry," Econometrica, Econometric Society, vol. 63(4), pages 891-951, July.
    11. Austan Goolsbee & Amil Petrin, 2004. "The Consumer Gains from Direct Broadcast Satellites and the Competition with Cable TV," Econometrica, Econometric Society, vol. 72(2), pages 351-381, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anindya Ghose & Sang Pil Han, 2014. "Estimating Demand for Mobile Applications in the New Economy," Management Science, INFORMS, vol. 60(6), pages 1470-1488, June.
    2. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82(5), pages 1749-1797, September.
    3. Adalja, Aaron A., 2018. "The Impact of Voluntary Non-GMO Labeling on Demand in the Ready-to-Eat Cereal Industry," 2018 Annual Meeting, August 5-7, Washington, D.C. 273817, Agricultural and Applied Economics Association.
    4. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    5. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    6. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    7. Federico Ciliberto & GianCarlo Moschini & Edward D. Perry, 2019. "Valuing product innovation: genetically engineered varieties in US corn and soybeans," RAND Journal of Economics, RAND Corporation, vol. 50(3), pages 615-644, September.
    8. Mayer, Thierry & Head, Keith, 2021. "Poor Substitutes? Counterfactual methods in IO and Trade compared," CEPR Discussion Papers 16762, C.E.P.R. Discussion Papers.
    9. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1445-1488, December.
    10. José Luis Moraga-González & Zsolt Sándor & Matthijs R Wildenbeest, 2023. "Consumer Search and Prices in the Automobile Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(3), pages 1394-1440.
    11. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    12. Mogens Fosgerau & Julien Monardo & André de Palma, 2019. "The Inverse Product Differentiation Logit Model," Working Papers hal-02183411, HAL.
    13. Amil Petrin & Kenneth Train, 2003. "Omitted Product Attributes in Discrete Choice Models," NBER Working Papers 9452, National Bureau of Economic Research, Inc.
    14. Pesendorfer, Martin & Schiraldi, Pasquale & Silva-Junior, Daniel, 2023. "Omitted budget constraint bias in discrete-choice demand models," International Journal of Industrial Organization, Elsevier, vol. 86(C).
    15. Gregory S. Crawford & Ali Yurukoglu, 2012. "The Welfare Effects of Bundling in Multichannel Television Markets," American Economic Review, American Economic Association, vol. 102(2), pages 643-685, April.
    16. Bokhari, Farasat A.S. & Mariuzzo, Franco, 2018. "Demand estimation and merger simulations for drugs: Logits v. AIDS," International Journal of Industrial Organization, Elsevier, vol. 61(C), pages 653-685.
    17. Franco Mariuzzo, 2005. "The Efect of Differences in Buyer and Non-Buyer Characteristics on Equilibrium Price-Elasticities: an Empirical Study on the Italian Automobile Market," Trinity Economics Papers tep13, Trinity College Dublin, Department of Economics.
    18. Miravete, Eugenio J. & Seim, Katja & Thurk, Jeff, 2023. "Pass-through and tax incidence in differentiated product markets," International Journal of Industrial Organization, Elsevier, vol. 90(C).
    19. Marco Guerzoni & Rene Soellner, 2013. "Uniqueness Seeking and Demand Estimation in the German Automobile Industry," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(2), pages 179-199, December.
    20. Kim, Hyunchul & Kim, Kyoo il, 2017. "Estimating store choices with endogenous shopping bundles and price uncertainty," International Journal of Industrial Organization, Elsevier, vol. 54(C), pages 1-36.

    More about this item

    Keywords

    Vehículos; Utilidad del consumidor; Demanda; Impuestos; Tasa de cambio; Ingreso;
    All these keywords.

    JEL classification:

    • L62 - Industrial Organization - - Industry Studies: Manufacturing - - - Automobiles; Other Transportation Equipment; Related Parts and Equipment
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000094:011570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angelica Bahos Olivera (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.