IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v90y2023i3p1394-1440..html
   My bibliography  Save this article

Consumer Search and Prices in the Automobile Market

Author

Listed:
  • José Luis Moraga-González
  • Zsolt Sándor
  • Matthijs R Wildenbeest

Abstract

This article develops a discrete choice model of demand with optimal sequential consumer search. Consumers first choose a product to search; then, once they learn the utility they get from the searched product, they choose whether to buy it or to keep searching. We characterize the search problem as a standard discrete choice problem and propose a parametric search cost distribution that generates closed-form expressions for the probability of purchasing a product. We propose a method to estimate the model that supplements aggregate product data with individual-specific data which allows for the separate identification of search costs and preferences. We estimate the model using data from the automobile industry and find that search costs have non-trivial implications for elasticities and markups. We study the effects of exclusive dealing regulation and find that firms benefit at the expense of consumers, who face higher search costs and higher prices than would be the case if multi-brand dealerships were used.

Suggested Citation

  • José Luis Moraga-González & Zsolt Sándor & Matthijs R Wildenbeest, 2023. "Consumer Search and Prices in the Automobile Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(3), pages 1394-1440.
  • Handle: RePEc:oup:restud:v:90:y:2023:i:3:p:1394-1440.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdac047
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Heski Bar-Isaac & Guillermo Caruana & Vicente Cunat, 2012. "Search, Design, and Market Structure," American Economic Review, American Economic Association, vol. 102(2), pages 1140-1160, April.
    2. Paulo Albuquerque & Bart J. Bronnenberg, 2012. "Measuring the Impact of Negative Demand Shocks on Car Dealer Networks," Marketing Science, INFORMS, vol. 31(1), pages 4-23, January.
    3. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    4. Goldberg, Pinelopi Koujianou, 1995. "Product Differentiation and Oligopoly in International Markets: The Case of the U.S. Automobile Industry," Econometrica, Econometric Society, vol. 63(4), pages 891-951, July.
    5. Laura Nurski & Frank Verboven, 2016. "Exclusive Dealing as a Barrier to Entry? Evidence from Automobiles," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(3), pages 1156-1188.
    6. Babur De los Santos & Ali Hortacsu & Matthijs R. Wildenbeest, 2012. "Search with Learning," Working Papers 2012-03, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy.
    7. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    8. Reinganum, Jennifer F, 1979. "A Simple Model of Equilibrium Price Dispersion," Journal of Political Economy, University of Chicago Press, vol. 87(4), pages 851-858, August.
    9. Elisabeth Honka, 2014. "Quantifying search and switching costs in the US auto insurance industry," RAND Journal of Economics, RAND Corporation, vol. 45(4), pages 847-884, December.
    10. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    11. Babur De Los Santos & Ali Hortacsu & Matthijs R. Wildenbeest, 2012. "Testing Models of Consumer Search Using Data on Web Browsing and Purchasing Behavior," American Economic Review, American Economic Association, vol. 102(6), pages 2955-2980, October.
    12. Michael Dinerstein & Liran Einav & Jonathan Levin & Neel Sundaresan, 2018. "Consumer Price Search and Platform Design in Internet Commerce," American Economic Review, American Economic Association, vol. 108(7), pages 1820-1859, July.
    13. Stahl, Dale O, II, 1989. "Oligopolistic Pricing with Sequential Consumer Search," American Economic Review, American Economic Association, vol. 79(4), pages 700-712, September.
    14. Sergei Koulayev, 2014. "Search for differentiated products: identification and estimation," RAND Journal of Economics, RAND Corporation, vol. 45(3), pages 553-575, September.
    15. Burdett, Kenneth & Judd, Kenneth L, 1983. "Equilibrium Price Dispersion," Econometrica, Econometric Society, vol. 51(4), pages 955-969, July.
    16. Moraga-González, José Luis & Wildenbeest, Matthijs R., 2008. "Maximum likelihood estimation of search costs," European Economic Review, Elsevier, vol. 52(5), pages 820-848, July.
    17. Amil Petrin, 2002. "Quantifying the Benefits of New Products: The Case of the Minivan," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 705-729, August.
    18. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    19. Moorthy, Sridhar & Ratchford, Brian T & Talukdar, Debabrata, 1997. "Consumer Information Search Revisited: Theory and Empirical Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 23(4), pages 263-277, March.
    20. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    21. Han Hong & Matthew Shum, 2006. "Using price distributions to estimate search costs," RAND Journal of Economics, RAND Corporation, vol. 37(2), pages 257-275, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De los Santos, Babur, 2018. "Consumer search on the Internet," International Journal of Industrial Organization, Elsevier, vol. 58(C), pages 66-105.
    2. Charles Murry & Yiyi Zhou, 2020. "Consumer Search and Automobile Dealer Colocation," Management Science, INFORMS, vol. 66(5), pages 1909-1934, May.
    3. Timothy J. Richards & Stephen F. Hamilton & Koichi Yonezawa, 2017. "Variety and the Cost of Search in Supermarket Retailing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 50(3), pages 263-285, May.
    4. Matsumoto, Brett & Spence, Forrest, 2016. "Price beliefs and experience: Do consumers’ beliefs converge to empirical distributions with repeated purchases?," Journal of Economic Behavior & Organization, Elsevier, vol. 126(PA), pages 243-254.
    5. Elisabeth Honka & Pradeep Chintagunta, 2017. "Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry," Marketing Science, INFORMS, vol. 36(1), pages 21-42, January.
    6. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    7. Jason Allen & Robert Clark & Jean-François Houde, 2019. "Search Frictions and Market Power in Negotiated-Price Markets," Journal of Political Economy, University of Chicago Press, vol. 127(4), pages 1550-1598.
    8. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    9. Xulia González & Daniel Miles-Touya, 2018. "Price dispersion, chain heterogeneity, and search in online grocery markets," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 9(1), pages 115-139, March.
    10. Xing Zhang & Tat Y. Chan & Ying Xie, 2018. "Price Search and Periodic Price Discounts," Management Science, INFORMS, vol. 64(2), pages 495-510, February.
    11. Bart J. Bronnenberg & Jun B. Kim & Carl F. Mela, 2016. "Zooming In on Choice: How Do Consumers Search for Cameras Online?," Marketing Science, INFORMS, vol. 35(5), pages 693-712, September.
    12. Tiago Pires, 2016. "Costly search and consideration sets in storable goods markets," Quantitative Marketing and Economics (QME), Springer, vol. 14(3), pages 157-193, September.
    13. Jason R. Blevins & Garrett T. Senney, 2019. "Dynamic selection and distributional bounds on search costs in dynamic unit‐demand models," Quantitative Economics, Econometric Society, vol. 10(3), pages 891-929, July.
    14. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    15. Backus, Matthew R. & Podwol, Joseph Uri & Schneider, Henry S., 2014. "Search costs and equilibrium price dispersion in auction markets," European Economic Review, Elsevier, vol. 71(C), pages 173-192.
    16. Dubois, Pierre & Perrone, Helena, 2015. "Price Dispersion and Informational Frictions: Evidence from Supermarket Purchases," CEPR Discussion Papers 10906, C.E.P.R. Discussion Papers.
    17. Ali Hortaçsu & Seyed Ali Madanizadeh & Steven L. Puller, 2017. "Power to Choose? An Analysis of Consumer Inertia in the Residential Electricity Market," American Economic Journal: Economic Policy, American Economic Association, vol. 9(4), pages 192-226, November.
    18. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    19. Elisabeth Honka, 2014. "Quantifying search and switching costs in the US auto insurance industry," RAND Journal of Economics, RAND Corporation, vol. 45(4), pages 847-884, December.
    20. Honka, Elisabeth & Seiler, Stephan & Ursu, Raluca, 2024. "Consumer search: What can we learn from pre-purchase data?," Journal of Retailing, Elsevier, vol. 100(1), pages 114-129.

    More about this item

    Keywords

    Consumer search; Differentiated products; Demand estimation; Automobiles; Exclusive dealing;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:90:y:2023:i:3:p:1394-1440.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.