IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf138.html
   My bibliography  Save this paper

Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment ( Revised in May 2009; Electronic version of an article will be published in "International Journal of Theoretical and Applied Finance". [copyright world Scientific Publishing Company][http://www.worldscinet.com/ijtaf/] )

Author

Listed:
  • Kyo Yamamoto

    (Graduate School of Economics, University of Tokyo)

  • Seisho Sato

    (Institute of Statistical Mathematics)

  • Akihiko Takahashi

    (Faculty of Economics, University of Tokyo)

Abstract

This paper studies the probability distribution and option pricing for drawdown in a stochastic volatility environment. Their analytical approximation formulas are derived by the application of a singular perturbation method (Fouque et al. [7]). The mathematical validity of the approximation is also proven. Then, numerical examples show that the instantaneous correlation between the asset value and the volatility state crucially affects the probability distribution and option prices for drawdown.

Suggested Citation

  • Kyo Yamamoto & Seisho Sato & Akihiko Takahashi, 2008. "Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment ( Revised in May 2009; Electronic version of an article will be published in "International Journal," CARF F-Series CARF-F-138, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf138
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/143.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Raphaël Douady & A.N. Shiryaev & Marc Yor, 2000. "On Probability Characteristics of "Downfalls" in a Standard Brownian Motion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01477104, HAL.
    3. Kyo Yamamoto & Akihiko Takahashi, 2008. "A Remark on a Singular Perturbation Method for Option Pricing under a Stochastic Volatility," CIRJE F-Series CIRJE-F-597, CIRJE, Faculty of Economics, University of Tokyo.
    4. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyo Yamamoto & Seisho Sato & Akihiko Takahashi, 2009. "Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-625, CIRJE, Faculty of Economics, University of Tokyo.
    2. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    3. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    4. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    5. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    6. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    7. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    8. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    9. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    10. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    11. Schuhmacher, Frank & Eling, Martin, 2011. "Sufficient conditions for expected utility to imply drawdown-based performance rankings," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2311-2318, September.
    12. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    13. Drenovak, Mikica & Ranković, Vladimir & Urošević, Branko & Jelic, Ranko, 2022. "Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm," Finance Research Letters, Elsevier, vol. 46(PA).
    14. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    15. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    16. Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
    17. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    18. Chung-Han Hsieh & B. Ross Barmish, 2017. "On Inefficiency of Markowitz-Style Investment Strategies When Drawdown is Important," Papers 1710.01501, arXiv.org, revised Aug 2018.
    19. Bogdan Grechuk & Michael Zabarankin, 2017. "Synergy effect of cooperative investment," Annals of Operations Research, Springer, vol. 249(1), pages 409-431, February.
    20. Ankush Agarwal & Ronnie Sircar, 2016. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Papers 1610.08558, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.