IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.01501.html
   My bibliography  Save this paper

On Inefficiency of Markowitz-Style Investment Strategies When Drawdown is Important

Author

Listed:
  • Chung-Han Hsieh
  • B. Ross Barmish

Abstract

The focal point of this paper is the issue of "drawdown" which arises in recursive betting scenarios and related applications in the stock market. Roughly speaking, drawdown is understood to mean drops in wealth over time from peaks to subsequent lows. Motivated by the fact that this issue is of paramount concern to conservative investors, we dispense with the classical variance as the risk metric and work with drawdown and mean return as the risk-reward pair. In this setting, the main results in this paper address the so-called "efficiency" of linear time-invariant (LTI) investment feedback strategies which correspond to Markowitz-style schemes in the finance literature. Our analysis begins with the following principle which is widely used in finance: Given two investment opportunities, if one of them has higher risk and lower return, it will be deemed to be inefficient or strictly dominated and generally rejected in the marketplace. In this framework, with risk-reward pair as described above, our main result is that classical Markowitz-style strategies are inefficient. To establish this, we use a new investment strategy which involves a time-varying linear feedback block K(k), called the drawdown modulator. Using this instead of the original LTI feedback block K in the Markowitz scheme, the desired domination is obtained. As a bonus, it is also seen that the modulator assures a worst-case level of drawdown protection with probability one.

Suggested Citation

  • Chung-Han Hsieh & B. Ross Barmish, 2017. "On Inefficiency of Markowitz-Style Investment Strategies When Drawdown is Important," Papers 1710.01501, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1710.01501
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.01501
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    3. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493, arXiv.org, revised Sep 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    2. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    3. Chung-Han Hsieh & B. Ross Barmish, 2017. "On Drawdown-Modulated Feedback Control in Stock Trading," Papers 1710.01503, arXiv.org.
    4. Philipp M. Möller, 2018. "Drawdown Measures And Return Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-42, November.
    5. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    6. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    7. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    8. Drenovak, Mikica & Ranković, Vladimir & Urošević, Branko & Jelic, Ranko, 2022. "Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm," Finance Research Letters, Elsevier, vol. 46(PA).
    9. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    10. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    11. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    12. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    13. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    14. Stanislaus Maier-Paape & Andreas Platen & Qiji Jim Zhu, 2019. "A General Framework for Portfolio Theory. Part III: Multi-Period Markets and Modular Approach," Risks, MDPI, vol. 7(2), pages 1-31, June.
    15. Korn, Olaf & Möller, Philipp M. & Schwehm, Christian, 2019. "Drawdown measures: Are they all the same?," CFR Working Papers 19-04, University of Cologne, Centre for Financial Research (CFR).
    16. Stanislaus Maier-Paape & Qiji Jim Zhu, 2018. "A General Framework for Portfolio Theory. Part II: Drawdown Risk Measures," Risks, MDPI, vol. 6(3), pages 1-31, August.
    17. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    18. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    19. Kyo Yamamoto & Seisho Sato & Akihiko Takahashi, 2009. "Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-625, CIRJE, Faculty of Economics, University of Tokyo.
    20. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.01501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.