IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2009cf625.html
   My bibliography  Save this paper

Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment

Author

Listed:
  • Kyo Yamamoto

    (Graduate School of Economics, University of Tokyo)

  • Seisho Sato

    (Department of Prediction and Control, Institute of Statistical Mathematics)

  • Akihiko Takahashi

    (Faculty of Economics, University of Tokyo)

Abstract

This paper studies the probability distribution and option pricing for drawdown in a stochastic volatility environment. Their analytical approximation formulas are derived by the application of a singular perturbation method (Fouque et al. [7]). The mathematical validity of the approximation is also proven. Then, numerical examples show that the instantaneous correlation between the asset value and the volatility state crucially affects the probability distribution and option prices for drawdown.

Suggested Citation

  • Kyo Yamamoto & Seisho Sato & Akihiko Takahashi, 2009. "Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-625, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2009cf625
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2009/2009cf625.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Raphaël Douady & A.N. Shiryaev & Marc Yor, 2000. "On Probability Characteristics of "Downfalls" in a Standard Brownian Motion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01477104, HAL.
    3. Kyo Yamamoto & Akihiko Takahashi, 2008. "A Remark on a Singular Perturbation Method for Option Pricing under a Stochastic Volatility," CIRJE F-Series CIRJE-F-597, CIRJE, Faculty of Economics, University of Tokyo.
    4. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyo Yamamoto & Akihiko Takahashi, 2009. "A Remark on a Singular Perturbation Method for Option Pricing Under a Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(4), pages 333-345, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyo Yamamoto & Seisho Sato & Akihiko Takahashi, 2008. "Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment ( Revised in May 2009; Electronic version of an article will be published in "International Journal," CARF F-Series CARF-F-138, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    3. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    4. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    5. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    6. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    7. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    8. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    9. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    10. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    11. Drenovak, Mikica & Ranković, Vladimir & Urošević, Branko & Jelic, Ranko, 2022. "Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm," Finance Research Letters, Elsevier, vol. 46(PA).
    12. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    13. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    14. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    15. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    16. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    17. Chung-Han Hsieh & B. Ross Barmish, 2017. "On Drawdown-Modulated Feedback Control in Stock Trading," Papers 1710.01503, arXiv.org.
    18. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    19. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    20. Philipp M. Möller, 2018. "Drawdown Measures And Return Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-42, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2009cf625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.