IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v222y2002i2p210-229.html
   My bibliography  Save this article

Statistische Besonderheiten von Finanzzeitreihen / Statistical Properties of Financial Time Series

Author

Listed:
  • Krämer Walter

    (Universität Dortmund, Fachbereich Statistik, Institut für Wirtschafts- und Sozialstatistik, D-44221 Dortmund)

Abstract

The article discusses various statistical peculiarities such as heavy tails and volatility clustering which set financial time series apart from other time series in economics. It shows that these peculiarities affect the null distributions of various efficiency test. It also shows that stock prices of German chemical companies are fractionally cointegrated and that structural changes in conditional volatilities are easily mistaken for long memory.

Suggested Citation

  • Krämer Walter, 2002. "Statistische Besonderheiten von Finanzzeitreihen / Statistical Properties of Financial Time Series," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(2), pages 210-229, April.
  • Handle: RePEc:jns:jbstat:v:222:y:2002:i:2:p:210-229
    DOI: 10.1515/jbnst-2002-0204
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2002-0204
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2002-0204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kleiber, Christian, 2001. "Finite sample efficiency of OLS in linear regression models with long-memory disturbances," Economics Letters, Elsevier, vol. 72(2), pages 131-136, August.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Dittmann, Ingolf, 1998. "Fractional cointegration of voting and non-voting shares," Technical Reports 1998,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Walter Kramer & Philipp Sibbertsen, 2002. "Testing for Structural Changes in the Presence of Long Memory," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(3), pages 235-242, December.
    7. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    8. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    9. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    10. Philip Hans Franses & Michael McAleer, 1998. "Testing for Unit Roots and Non‐linear Transformations," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(2), pages 147-164, March.
    11. Ingolf Dittmann, 2004. "Error Correction Models for Fractionally Cointegrated Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 27-32, January.
    12. Kramer, Walter & Hassler, Uwe, 1998. "Limiting efficiency of OLS vs. GLS when regressors are fractionally integrated," Economics Letters, Elsevier, vol. 60(3), pages 285-290, September.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Sibbertsen, Philipp, 1999. "S-estimation in the nonlinear regression model with long-memory error terms," Technical Reports 1999,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Kramer, Walter & Marmol, Francesc, 2004. "The power of residual-based tests for cointegration when residuals are fractionally integrated," Economics Letters, Elsevier, vol. 82(1), pages 63-69, January.
    16. Kramer, Walter & Davies, Laurie, 2002. "Testing for unit roots in the context of misspecified logarithmic random walks," Economics Letters, Elsevier, vol. 74(3), pages 313-319, February.
    17. Runde, Ralf, 1993. "A note on the asymptotic distribution of the F-statistic for random variables with infinite variance," Statistics & Probability Letters, Elsevier, vol. 18(1), pages 9-12, August.
    18. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    19. Runde, Ralf, 1997. "The asymptotic null distribution of the Box-Pierce Q-statistic for random variables with infinite variance an application to German stock returns," Journal of Econometrics, Elsevier, vol. 78(2), pages 205-216, June.
    20. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    21. Kramer, Walter & Runde, Ralf, 1996. "Stochastic Properties of German Stock Returns," Empirical Economics, Springer, vol. 21(2), pages 281-306.
    22. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    23. Cheung, Yin-Wong & Lai, Kon S, 1993. "A Fractional Cointegration Analysis of Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 103-112, January.
    24. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    25. Sibbertsen, Philipp, 2000. "Robust CUSUM-M test in the presence of long-memory disturbances," Technical Reports 2000,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    26. Kramer, Walter, 1998. "Fractional integration and the augmented Dickey-Fuller Test," Economics Letters, Elsevier, vol. 61(3), pages 269-272, December.
    27. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    28. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(4), pages 736-749, August.
    29. Franses, Philip Hans & Koop, Gary, 1998. "On the sensitivity of unit root inference to nonlinear data transformations," Economics Letters, Elsevier, vol. 59(1), pages 7-15, April.
    30. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-126, February.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wied, Dominik & Dehling, Herold & van Kampen, Maarten & Vogel, Daniel, 2014. "A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 723-736.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    5. Gordon V. Chavez, 2019. "Dynamic tail inference with log-Laplace volatility," Papers 1901.02419, arXiv.org, revised Jul 2019.
    6. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    7. Eskandar A. Tooma, 2003. "Modeling and Forecasting Egyptian Stock Market Volatility Before and After Price Limits," Working Papers 0310, Economic Research Forum, revised Apr 2003.
    8. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    9. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    10. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    11. Pedro J. F. de Lima & Michelle L. Barnes, 2000. "Modeling Financial Volatility: Extreme Observations, Nonlinearities and Nonstationarities," School of Economics and Public Policy Working Papers 2000-05, University of Adelaide, School of Economics and Public Policy.
    12. Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
    13. Li, Youwei & Hamill, Philip A. & Opong, Kwaku K., 2010. "Do benchmark African equity indices exhibit the stylized facts?," Global Finance Journal, Elsevier, vol. 21(1), pages 71-97.
    14. McMillan, David G. & Ruiz, Isabel, 2009. "Volatility persistence, long memory and time-varying unconditional mean: Evidence from 10 equity indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(2), pages 578-595, May.
    15. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    16. Milton Abdul Thorlie & Lixin Song & Muhammad Amin & Xiaoguang Wang, 2015. "Modeling and forecasting of stock index volatility with APARCH models under ordered restriction," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 329-356, August.
    17. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    18. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    19. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    20. Gabriel Rodríguez & Roxana Tramontana Tocto, 2015. "Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 52(2), pages 185-211, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:222:y:2002:i:2:p:210-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.