IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_11360.html
   My bibliography  Save this paper

Watts and Bots: The Energy Implications of AI Adoption

Author

Listed:
  • Anthony R. Harding
  • Juan Moreno-Cruz

Abstract

With the rapid expansion of Artificial Intelligence, there are expectations for a proportional expansion of economic activity due to increased productivity, and with it energy consumption and its associated environmental consequences like carbon dioxide emissions. Here, we combine data on economic activity, with early estimates of likely adoption of AI across occupations and industries, to estimate the increase in energy use and carbon dioxide emissions at the industry level and in aggregate for the US economy. At the industry level, energy use can increase between 0 and 12 PJ per year, while emissions increase between 47 tCO2 and 272 ktCO2. Aggregating across industries in the US economy, this totals an increase in energy consumption of 28 PJ per year, or around 0.03% of energy use per year in the US. We find this translates to an increase in carbon dioxide emissions of 896 ktCO2 per year, or around 0.02% of the CO2 emissions per year in the US.

Suggested Citation

  • Anthony R. Harding & Juan Moreno-Cruz, 2024. "Watts and Bots: The Energy Implications of AI Adoption," CESifo Working Paper Series 11360, CESifo.
  • Handle: RePEc:ces:ceswps:_11360
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp11360.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    2. Mark Howells & Sebastian Hermann & Manuel Welsch & Morgan Bazilian & Rebecka Segerström & Thomas Alfstad & Dolf Gielen & Holger Rogner & Guenther Fischer & Harrij van Velthuizen & David Wiberg & Charl, 2013. "Integrated analysis of climate change, land-use, energy and water strategies," Nature Climate Change, Nature, vol. 3(7), pages 621-626, July.
    3. Kathryn Bonney & Cory Breaux & Catherine Buffington & Emin Dinlersoz & Lucia Foster & Nathan Goldschlag & John Haltiwanger & Zachary Kroff & Keith Savage, 2024. "Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey," Working Papers 24-16, Center for Economic Studies, U.S. Census Bureau.
    4. Amy Luers & Jonathan Koomey & Eric Masanet & Owen Gaffney & Felix Creutzig & Juan Lavista Ferres & Eric Horvitz, 2024. "Will AI accelerate or delay the race to net-zero emissions?," Nature, Nature, vol. 628(8009), pages 718-720, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulte, Patrick, 2015. "Does skill-biased technical change diffuse internationally?," ZEW Discussion Papers 15-088, ZEW - Leibniz Centre for European Economic Research.
    2. Ke Zhang & Xingwei Wang, 2021. "Pollution Haven Hypothesis of Global CO 2 , SO 2 , NO x —Evidence from 43 Economies and 56 Sectors," IJERPH, MDPI, vol. 18(12), pages 1-27, June.
    3. Yuko Imura, 2023. "Reassessing Trade Barriers with Global Production Networks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 77-116, December.
    4. Aleksandra Parteka & Joanna Wolszczak-Derlacz, 2020. "Wage response to global production links: evidence for workers from 28 European countries (2005–2014)," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 156(4), pages 769-801, November.
    5. Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    6. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    7. Hylke Vandenbussche & William Connell & Wouter Simons, 2022. "Global value chains, trade shocks and jobs: An application to Brexit," The World Economy, Wiley Blackwell, vol. 45(8), pages 2338-2369, August.
    8. Foellmi, Reto & Hepenstrick, Christian & Torun, David, 2022. "Triangle Inequalities in International Trade: The Neglected Dimension," CEPR Discussion Papers 17118, C.E.P.R. Discussion Papers.
    9. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    10. Zhou, Yixiao & Tyers, Rod, 2019. "Automation and inequality in China," China Economic Review, Elsevier, vol. 58(C).
    11. Ana Maria Santacreu & Michael Sposi & Jing Zhang, 2021. "What Determines State Heterogeneity in Response to US Tariff Changes?," Working Papers 2021-007, Federal Reserve Bank of St. Louis, revised 08 Mar 2023.
    12. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    13. Erik Frohm & Vanessa Gunnella, 2021. "Spillovers in global production networks," Review of International Economics, Wiley Blackwell, vol. 29(3), pages 663-680, August.
    14. Beniamino Quintieri & Giovanni Stamato, 2023. "Are preferential agreements beneficial to EU trade? New evidence from the EU–South Korea treaty," The World Economy, Wiley Blackwell, vol. 46(12), pages 3511-3541, December.
    15. Koch, Philipp, 2021. "Economic complexity and growth: Can value-added exports better explain the link?," Economics Letters, Elsevier, vol. 198(C).
    16. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    17. Semrau, Finn Ole, 2022. "On the Drivers of Clean Production: Firms' Global Value Chain Positioning," VfS Annual Conference 2022 (Basel): Big Data in Economics 264178, Verein für Socialpolitik / German Economic Association.
    18. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    19. Peter Gal & Alexander Hijzen, 2016. "The short-term impact of product market reforms: A cross-country firm-level analysis," OECD Economics Department Working Papers 1311, OECD Publishing.
    20. Georg Graetz & Guy Michaels, 2017. "Is Modern Technology Responsible for Jobless Recoveries?," American Economic Review, American Economic Association, vol. 107(5), pages 168-173, May.

    More about this item

    Keywords

    artificial intelligence; energy; climate change;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_11360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.