IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/533.html
   My bibliography  Save this paper

Large-Sample Inference on SpatialDependence

Author

Listed:
  • Peter M Robinson

Abstract

We consider cross-sectional data that exhibit no spatial correla-tion, but are feared to be spatially dependent. We demonstrate that a spatialversion of the stochastic volatility model of financial econometrics, entailing aform of spatial autoregression, can explain such behaviour. The parameters areestimated by pseudo Gaussian maximum likelihood based on log-transformedsquares, and consistency and asymptotic normality are established. Asymptotically valid tests for spatial independence are developed.

Suggested Citation

  • Peter M Robinson, 2009. "Large-Sample Inference on SpatialDependence," STICERD - Econometrics Paper Series 533, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:533
    as

    Download full text from publisher

    File URL: https://sticerd.lse.ac.uk/dps/em/em533.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    2. Peter Robinson, 2007. "Correlation testing in time series, spatial and cross-sectional data," CeMMAP working papers CWP01/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Craig Brett & Joris Pinkse, 1997. "Those Taxes are all over the Map! A Test for Spatial Independence of Municipal Tax Rates in British Columbia," International Regional Science Review, , vol. 20(1-2), pages 131-151, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    2. Takaki Sato & Yasumasa Matsuda, 2016. "Spatial Autoregressive Conditional Heteroscedasticity Model and Its Application," TERG Discussion Papers 348, Graduate School of Economics and Management, Tohoku University.
    3. Joris Pinkse & Margaret E. Slade, 2010. "The Future Of Spatial Econometrics," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 103-117, February.
    4. Osman Dou{g}an & Raffaele Mattera & Philipp Otto & Suleyman Tac{s}p{i}nar, 2024. "A Dynamic Spatiotemporal and Network ARCH Model with Common Factors," Papers 2410.16526, arXiv.org.
    5. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar, 2022. "Dynamic Spatiotemporal ARCH Models," Papers 2202.13856, arXiv.org.
    6. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar, 2023. "Dynamic Spatiotemporal ARCH Models: Small and Large Sample Results," Papers 2312.05898, arXiv.org.
    7. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    8. Philipp Otto, 2022. "A Multivariate Spatial and Spatiotemporal ARCH Model," Papers 2204.12472, arXiv.org.
    9. Fernando López & Mariano Matilla-García & Jesús Mur & Manuel Ruiz Marín, 2021. "Statistical Tests of Symbolic Dynamics," Mathematics, MDPI, vol. 9(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robinson, Peter, 2008. "Large-sample inference on spatial dependence," LSE Research Online Documents on Economics 25472, London School of Economics and Political Science, LSE Library.
    2. Peter Robinson, 2008. "Large-sample inference on spatial dependence," CeMMAP working papers CWP29/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Peng Wang & Xiaoyan Lin & Dajun Dai, 2017. "Spatiotemporal Agglomeration of Real-Estate Industry in Guangzhou, China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    5. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    6. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    7. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    8. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    9. Vicente Rios Ibañez, 2014. "What drives regional unemployment convergence?," ERSA conference papers ersa14p924, European Regional Science Association.
    10. Yang, Zhenlin, 2010. "A robust LM test for spatial error components," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 299-310, September.
    11. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," CESifo Working Paper Series 5428, CESifo.
    12. Kristian Behrens & Cem Ertur & Wilfried Koch, 2012. "‘Dual’ Gravity: Using Spatial Econometrics To Control For Multilateral Resistance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 773-794, August.
    13. Timothy G. Conley & Nirav Mehta & Ralph Stinebrickner & Todd Stinebrickner, 2024. "Social Interactions, Mechanisms, and Equilibrium: Evidence from a Model of Study Time and Academic Achievement," Journal of Political Economy, University of Chicago Press, vol. 132(3), pages 824-866.
    14. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    15. Mustafa Koroglu & Yiguo Sun, 2016. "Functional-Coefficient Spatial Durbin Models with Nonparametric Spatial Weights: An Application to Economic Growth," Econometrics, MDPI, vol. 4(1), pages 1-16, February.
    16. Jiaxuan Liang & Yi Cheng & Yuqi Su & Shuyue Xiao & Yunquan Song, 2022. "Variable Selection for Spatial Logistic Autoregressive Models," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    17. Théophile Azomahou, 2008. "Minimum distance estimation of the spatial panel autoregressive model," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 2(1), pages 49-83, April.
    18. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    19. Badi H. Baltagi & Zhenlin Yang, 2013. "Standardized LM tests for spatial error dependence in linear or panel regressions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 103-134, February.
    20. Roger Bivand, 2008. "Implementing Representations Of Space In Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.