IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3095-d900266.html
   My bibliography  Save this article

Variable Selection for Spatial Logistic Autoregressive Models

Author

Listed:
  • Jiaxuan Liang

    (School of Science, China University of Petroleum, Qingdao 266580, China)

  • Yi Cheng

    (School of Science, China University of Petroleum, Qingdao 266580, China)

  • Yuqi Su

    (School of Science, China University of Petroleum, Qingdao 266580, China)

  • Shuyue Xiao

    (School of Science, China University of Petroleum, Qingdao 266580, China)

  • Yunquan Song

    (School of Science, China University of Petroleum, Qingdao 266580, China)

Abstract

When the spatial response variables are discrete, the spatial logistic autoregressive model adds an additional network structure to the ordinary logistic regression model to improve the classification accuracy. With the emergence of high-dimensional data in various fields, sparse spatial logistic regression models have attracted a great deal of interest from researchers. For the high-dimensional spatial logistic autoregressive model, in this paper, we propose a variable selection method with for the spatial logistic model. To identify important variables and make predictions, one efficient algorithm is employed to solve the penalized likelihood function. Simulations and a real example show that our methods perform well in a limited sample.

Suggested Citation

  • Jiaxuan Liang & Yi Cheng & Yuqi Su & Shuyue Xiao & Yunquan Song, 2022. "Variable Selection for Spatial Logistic Autoregressive Models," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3095-:d:900266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Yunquan & Liang, Xijun & Zhu, Yanji & Lin, Lu, 2021. "Robust variable selection with exponential squared loss for the spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Han, Xiaoyi & Hsieh, Chih-Sheng & Lee, Lung-fei, 2017. "Estimation and model selection of higher-order spatial autoregressive model: An efficient Bayesian approach," Regional Science and Urban Economics, Elsevier, vol. 63(C), pages 97-120.
    4. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    5. Liv Osland, 2010. "An Application of Spatial Econometrics in Relation to Hedonic House Price Modelling," Journal of Real Estate Research, American Real Estate Society, vol. 32(3), pages 289-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yingying & Lan, Wei & Zhou, Fanying & Wang, Hansheng, 2020. "Approximate least squares estimation for spatial autoregressive models with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    2. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    3. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    4. Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
    5. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    6. Yueqin Wu & Yan Sun, 2017. "Shrinkage estimation of the linear model with spatial interaction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 51-68, January.
    7. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    8. Zhu, Xuening & Huang, Danyang & Pan, Rui & Wang, Hansheng, 2020. "Multivariate spatial autoregressive model for large scale social networks," Journal of Econometrics, Elsevier, vol. 215(2), pages 591-606.
    9. Xuan Liu & Jianbao Chen, 2021. "Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
    10. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    11. Tianfa Xie & Ruiyuan Cao & Jiang Du, 2020. "Variable selection for spatial autoregressive models with a diverging number of parameters," Statistical Papers, Springer, vol. 61(3), pages 1125-1145, June.
    12. Huang, Danyang & Hu, Wei & Jing, Bingyi & Zhang, Bo, 2023. "Grouped spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    13. Wu, Yujia & Lan, Wei & Fan, Xinyan & Fang, Kuangnan, 2024. "Bipartite network influence analysis of a two-mode network," Journal of Econometrics, Elsevier, vol. 239(2).
    14. Zhu, Xuening & Chang, Xiangyu & Li, Runze & Wang, Hansheng, 2019. "Portal nodes screening for large scale social networks," Journal of Econometrics, Elsevier, vol. 209(2), pages 145-157.
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. Peng Wang & Xiaoyan Lin & Dajun Dai, 2017. "Spatiotemporal Agglomeration of Real-Estate Industry in Guangzhou, China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    17. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    18. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    19. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    20. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3095-:d:900266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.