IDEAS home Printed from https://ideas.repec.org/p/cen/tnotes/21-06.html
   My bibliography  Save this paper

Establishment Size Distributions in the Synthetic LBD

Author

Listed:
  • Illenin Kondo
  • Logan T. Lewis
  • Andrea Stella

Abstract

We compare parametric estimates of the establishment size distribution between the Synthetic Longitudinal Business Database (SynLBD) against our results (Kondo et al. 2020) using the confidential Longitudinal Business Database (LBD). We find that while the SynLBD qualitatively produces the same ranking of distribution fit, the differences in quantitative estimates are economically meaningful. In particular, we show that the SynLBD does not accurately represent the right tail of the establishment size distribution.

Suggested Citation

  • Illenin Kondo & Logan T. Lewis & Andrea Stella, 2021. "Establishment Size Distributions in the Synthetic LBD," CES Technical Notes Series 21-06, Center for Economic Studies, U.S. Census Bureau.
  • Handle: RePEc:cen:tnotes:21-06
    as

    Download full text from publisher

    File URL: https://www2.census.gov/ces/tn/CES-TN-2021-06.pdf
    File Function: Abstract
    Download Restriction: CES Technical Notes may contain confidential data and, thereby, disclosure is prohibited. Researchers on approved projects (to apply for access, please see https://www.census.gov/ces/rdcresearch/howtoapply.html) with the correct permissions can request full text notes from CES.Technical.Notes.List@census.gov.

    File URL: https://www.census.gov/about/adrm/ced/apply-for-access.html?CES-TN-2021-06
    File Function: First version, 2021
    Download Restriction: CES Technical Notes may contain confidential data and, thereby, disclosure is prohibited. Researchers on approved projects (to apply for access, please see https://www.census.gov/ces/rdcresearch/howtoapply.html) with the correct permissions can request full text notes from CES.Technical.Notes.List@census.gov.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database," International Statistical Review, International Statistical Institute, vol. 79(3), pages 362-384, December.
    2. Illenin O. Kondo & Logan T. Lewis & Andrea Stella, 2021. "Heavy Tailed, but not Zipf: Firm and Establishment Size in the U.S," Working Papers 21-15, Center for Economic Studies, U.S. Census Bureau.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.
    2. Little Roderick J., 2013. "Discussion," Journal of Official Statistics, Sciendo, vol. 29(3), pages 363-366, June.
    3. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    4. David R. Munro, 2021. "Consumer Behavior and Firm Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 845-873, June.
    5. Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018. "Identification, data combination, and the risk of disclosure," Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
    6. Martin Klein & Ricardo Moura & Bimal Sinha, 2021. "Multivariate Normal Inference based on Singly Imputed Synthetic Data under Plug-in Sampling," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 273-287, May.
    7. Ori Heffetz & Katrina Ligett, 2014. "Privacy and Data-Based Research," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 75-98, Spring.
    8. Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
    9. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
    10. Felix Ritchie & Jim Smith, 2019. "Confidentiality and linked data," Papers 1907.06465, arXiv.org.
    11. Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
    12. Gary Benedetto & Jordan C. Stanley & Evan Totty, 2018. "The Creation and Use of the SIPP Synthetic Beta v7.0," CES Technical Notes Series 18-03, Center for Economic Studies, U.S. Census Bureau.
    13. John M. Abowd & Ian M. Schmutte, 2015. "Economic Analysis and Statistical Disclosure Limitation," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 50(1 (Spring), pages 221-293.
    14. Jörg Drechsler, 2015. "Multiple Imputation of Multilevel Missing Data—Rigor Versus Simplicity," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 69-95, February.
    15. Hang J. Kim & Jörg Drechsler & Katherine J. Thompson, 2021. "Synthetic microdata for establishment surveys under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 255-281, January.
    16. Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
    17. Javier Miranda & Lars Vilhuber, 2016. "Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics," Working Papers 16-10, Center for Economic Studies, U.S. Census Bureau.
    18. Ian Lundberg & Arvind Narayanan & Karen Levy & Matthew Salganik, 2018. "Privacy, ethics, and data access: A case study of the Fragile Families Challenge," Working Papers wp18-09-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    19. Klein, Martin & Sinha, Bimal, 2015. "Likelihood-based inference for singly and multiply imputed synthetic data under a normal model," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 168-175.
    20. Allen Tran, 2013. "Customer Driven Establishment Dynamics and Allocative Efficiency," 2013 Meeting Papers 115, Society for Economic Dynamics.

    More about this item

    Keywords

    LBD; SynthLBD;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:tnotes:21-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Danielle H. Sandler (email available below). General contact details of provider: https://edirc.repec.org/data/cesgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.