IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.06465.html
   My bibliography  Save this paper

Confidentiality and linked data

Author

Listed:
  • Felix Ritchie
  • Jim Smith

Abstract

Data providers such as government statistical agencies perform a balancing act: maximising information published to inform decision-making and research, while simultaneously protecting privacy. The emergence of identified administrative datasets with the potential for sharing (and thus linking) offers huge potential benefits but significant additional risks. This article introduces the principles and methods of linking data across different sources and points in time, focusing on potential areas of risk. We then consider confidentiality risk, focusing in particular on the "intruder" problem central to the area, and looking at both risks from data producer outputs and from the release of micro-data for further analysis. Finally, we briefly consider potential solutions to micro-data release, both the statistical solutions considered in other contributed articles and non-statistical solutions.

Suggested Citation

  • Felix Ritchie & Jim Smith, 2019. "Confidentiality and linked data," Papers 1907.06465, arXiv.org.
  • Handle: RePEc:arx:papers:1907.06465
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.06465
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans-Peter Hafner & Felix Ritchie & Rainer Lenz, 2015. "User-focused threat identification for anonymised microdata," Working Papers 20151503, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.
    2. Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database," International Statistical Review, International Statistical Institute, vol. 79(3), pages 362-384, December.
    3. Christine M. O'Keefe & James O. Chipperfield, 2013. "A Summary of Attack Methods and Confidentiality Protection Measures for Fully Automated Remote Analysis Systems," International Statistical Review, International Statistical Institute, vol. 81(3), pages 426-455, December.
    4. Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
    5. Felix Ritchie, 2014. "Operationalising ‘safe statistics’: the case of linear regression," Working Papers 20141410, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
    2. Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.
    3. Dominik Bietsch & Robert Stahlbock & Stefan Voß, 2023. "Synthetic Data as a Proxy for Real-World Electronic Health Records in the Patient Length of Stay Prediction," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    4. Little Roderick J., 2013. "Discussion," Journal of Official Statistics, Sciendo, vol. 29(3), pages 363-366, June.
    5. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    6. David R. Munro, 2021. "Consumer Behavior and Firm Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 845-873, June.
    7. Chipperfield James & Newman John & Thompson Gwenda & Ma Yue & Lin Yan-Xia, 2019. "Prospects for Protecting Business Microdata when Releasing Population Totals via a Remote Server," Journal of Official Statistics, Sciendo, vol. 35(2), pages 319-336, June.
    8. Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018. "Identification, data combination, and the risk of disclosure," Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
    9. Martin Klein & Ricardo Moura & Bimal Sinha, 2021. "Multivariate Normal Inference based on Singly Imputed Synthetic Data under Plug-in Sampling," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 273-287, May.
    10. Tanvi Desai & Felix Ritchie & Richard Welpton, 2016. "Five Safes: designing data access for research," Working Papers 20161601, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.
    11. Gunjan Chandra & Pekka Siirtola & Satu Tamminen & Mikael J. Knip & Riitta Veijola & Juha Röning, 2022. "Impacts of Data Synthesis: A Metric for Quantifiable Data Standards and Performances," Data, MDPI, vol. 7(12), pages 1-26, December.
    12. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    13. Ori Heffetz & Katrina Ligett, 2014. "Privacy and Data-Based Research," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 75-98, Spring.
    14. Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
    15. Daiho Uhm & Sunghae Jun, 2022. "Zero-Inflated Patent Data Analysis Using Generating Synthetic Samples," Future Internet, MDPI, vol. 14(7), pages 1-11, July.
    16. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
    17. Gary Benedetto & Jordan C. Stanley & Evan Totty, 2018. "The Creation and Use of the SIPP Synthetic Beta v7.0," CES Technical Notes Series 18-03, Center for Economic Studies, U.S. Census Bureau.
    18. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    19. Jahangir Alam M. & Dostie Benoit & Drechsler Jörg & Vilhuber Lars, 2020. "Applying data synthesis for longitudinal business data across three countries," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 212-236, August.
    20. John M. Abowd & Ian M. Schmutte, 2015. "Economic Analysis and Statistical Disclosure Limitation," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 50(1 (Spring), pages 221-293.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.06465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.