IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt5131891j.html
   My bibliography  Save this paper

The Potential of Turboprops to Reduce Aviation Fuel Consumption

Author

Listed:
  • Smirti, Megan
  • Hansen, Mark

Abstract

Aviation system planning, particularly fleet selection and adoption, is challenged by fuel price uncertainty. Fuel price uncertainty is due fuel and energy price fluctuations and a growing awareness of the environmental externalities related to transportation activities, particularly as they relate to climate change. To assist in aviation systems planning under such fuel price uncertainty and environmental regulation, this study takes a total logistic cost approach and evaluates three representative aircraft (narrow body, regional jet, and turboprop) for operating and passenger preference costs over a range of fuel prices. Homogenous fleets of each vehicle category are compared for operating and passenger costs over a range of fuel prices and route distances and the minimum cost fleet mix is determined. In general, as fuel prices increase, the turboprop offers a lower cost per seat over a wider range of distances when compared with both jet aircraft models. The inclusion of passenger costs along with operating costs decreases the fuel price - distance space where the turboprop exhibits the lower cost. This analysis shows that the lowest cost aircraft selection is highly sensitive to fuel prices and passenger costs, and points to the important balance between saving fuel and serving passengers. The conclusion that high fuel prices rationalize major changes in fleet composition despite higher passenger costs have implications for airlines and aircraft manufacturers when considering aircraft adoption and manufacturing strategies under future fuel price scenarios.

Suggested Citation

  • Smirti, Megan & Hansen, Mark, 2009. "The Potential of Turboprops to Reduce Aviation Fuel Consumption," University of California Transportation Center, Working Papers qt5131891j, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt5131891j
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/5131891j.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    2. Wei, Wenbin & Hansen, Mark, 2005. "Impact of aircraft size and seat availability on airlines' demand and market share in duopoly markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 315-327, July.
    3. Scheelhaase, Janina D. & Grimme, Wolfgang G., 2007. "Emissions trading for international aviation—an estimation of the economic impact on selected European airlines," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 253-263.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    2. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    3. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    4. Dixit, Aasheesh & Kumar, Patanjal & Jakhar, Suresh Kumar, 2022. "Effectiveness of carbon tax and congestion cost in improving the airline industry greening level and welfare: A case of two competing airlines," Journal of Air Transport Management, Elsevier, vol. 100(C).
    5. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.
    6. Tiziana D'Alfonso & Changmin Jiang & Valentina Bracaglia, 2015. "Air transport and high-speed rail competition: environmental implications and mitigation strategies," DIAG Technical Reports 2015-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    7. Kang, Yicheng & Liao, Sha & Jiang, Changmin & D’Alfonso, Tiziana, 2022. "Synthetic control methods for policy analysis: Evaluating the effect of the European Emission Trading System on aviation supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 236-252.
    8. Lay Eng Teoh & Hooi Ling Khoo, 2016. "Fleet Planning Decision-Making: Two-Stage Optimization with Slot Purchase," Journal of Optimization, Hindawi, vol. 2016, pages 1-12, June.
    9. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    10. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    11. Escobari, Diego, 2014. "Estimating dynamic demand for airlines," Economics Letters, Elsevier, vol. 124(1), pages 26-29.
    12. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    13. Sibdari, Soheil & Mohammadian, Iman & Pyke, David F., 2018. "On the impact of jet fuel cost on airlines’ capacity choice: Evidence from the U.S. domestic markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 1-17.
    14. Chen, Yilin & Hou, Meng & Wang, Kun & Yang, Hangjun, 2023. "Government interventions in regional airline markets based on aircraft size—Welfare and environmental implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    15. Armin Ibitz, 2015. "Towards a global scheme for carbon emissions reduction in aviation: China’s role in blocking the extension of the European Union’s Emissions Trading Scheme," Asia Europe Journal, Springer, vol. 13(2), pages 113-130, June.
    16. Koo, Tay T.R. & Hossein Rashidi, Taha & Park, Jin-Woo & Wu, Cheng-Lung & Tseng, Wen-Chun, 2017. "The effect of enhanced international air access on the demand for peripheral tourism destinations: Evidence from air itinerary choice behaviour of Korean visitors to Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 116-129.
    17. Wei, Wenbin, 2008. "A new approach to quantify the benefit to air travelers resulting from airport capacity expansion," Journal of Air Transport Management, Elsevier, vol. 14(1), pages 47-49.
    18. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    19. Luis Cadarso & Vikrant Vaze & Cynthia Barnhart & Ángel Marín, 2017. "Integrated Airline Scheduling: Considering Competition Effects and the Entry of the High Speed Rail," Transportation Science, INFORMS, vol. 51(1), pages 132-154, February.
    20. Mayer, Robert & Ryley, Tim & Gillingwater, David, 2015. "Eco-positioning of airlines: Perception versus actual performance," Journal of Air Transport Management, Elsevier, vol. 44, pages 82-89.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt5131891j. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.