IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt0zp4g99j.html
   My bibliography  Save this paper

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information

Author

Listed:
  • Sheng, Hongyan

Abstract

Improving air quality has long been a big concern for society. The original Clean Air Act was signed by president Nixon in 1970 in accordance to national clamor for environmental healing. In 1990, president Bush signed the Clean Air bill which made significant revisions tot he original Clean Air Act. The Clean Air Act Amendments of 1990 establishes tighter pollution standards for emissions from automobiles and trucks. The new law also allows stricter emission limits for vehicles in California which can be met with any combination of vehicle technology and cleaner fuels. As a result, in the 1990s, California passed a law which mandates the introduction and sale of low-emission vehicles (e.g. natural gas vehicles) and zero-emission vehicles (e.g. electric vehicles). According to the levels set by California Air Resources Board, 10% of all vehicles sold in California must be electric vehicles by year 2003. Moreover, other states are actually considering following California's lead and adopting similar policies and incentive programs.

Suggested Citation

  • Sheng, Hongyan, 1999. "A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information," University of California Transportation Center, Working Papers qt0zp4g99j, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt0zp4g99j
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0zp4g99j.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golob, Thomas F. & Bunch, David S. & Brownstone, David, 1997. "A Vehicle Use Forecasting Model Based on Revealed and Stated Vehicle Type Choice and Utilisation Data," University of California Transportation Center, Working Papers qt2x86k20c, University of California Transportation Center.
    2. Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," Department of Economics, Working Paper Series qt3tb6j874, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    3. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    4. Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Department of Economics, Working Paper Series qt45f996hh, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    5. Golob, Thomas F & Bunch, David S & Brownstone, David, 1997. "A Vehicle Use Forecasting Model Based on Revealed and Stated Vehicle Type Choice and Utilisation Data," University of California Transportation Center, Working Papers qt2bz335vw, University of California Transportation Center.
    6. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    7. Brownston, David & Bunch, David S. & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Department of Economics, Working Paper Series qt7rf7s3nx, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    8. Calfee, John E., 1985. "Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 287-301, August.
    9. Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt3tb6j874, University of California Transportation Center.
    10. Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt45f996hh, University of California Transportation Center.
    11. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    12. Jong, Gerard De, 1996. "A disaggregate model system of vehicle holding duration, type choice and use," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 263-276, August.
    13. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    14. Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt1j6814b3, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    2. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    3. Thomas M. Fojcik & Heike Proff, 2014. "Accelerating market diffusion of battery electric vehicles through alternative mobility concepts," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 347-368.
    4. J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
    5. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    6. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    7. J�r�me Massiani, 2013. "SP surveys for electric and alternative fuel vehicles: are we doing the right thing?," Working Papers 2013_01, Department of Economics, University of Venice "Ca' Foscari".
    8. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    9. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    10. Takanori Ida & Kayo Murakami & Makoto Tanaka, 2012. "Keys to Smart Home Diffusion: A Stated Preference Analysis of Smart Meters, Photovoltaic Generation, and Electric/Hybrid Vehicles," Discussion papers e-11-011, Graduate School of Economics Project Center, Kyoto University.
    11. Nobuyuki Ito & Kenji Takeuchi & Shunsuke Managi, 2012. "Willingness to pay for the infrastructure investments for alternative fuel vehicles," Discussion Papers 1207, Graduate School of Economics, Kobe University.
    12. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    13. Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
    14. Baltas, George & Saridakis, Charalampos, 2013. "An empirical investigation of the impact of behavioural and psychographic consumer characteristics on car preferences: An integrated model of car type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 92-110.
    15. Hong, Junhee & Koo, Yoonmo & Jeong, Gicheol & Lee, Jongsu, 2012. "Ex-ante evaluation of profitability and government's subsidy policy on vehicle-to-grid system," Energy Policy, Elsevier, vol. 42(C), pages 95-104.
    16. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    17. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    18. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    19. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    20. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.

    More about this item

    Keywords

    Social and Behavioral Sciences;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt0zp4g99j. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.