IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt8j0585hg.html
   My bibliography  Save this paper

Spatiotemporal Studies of Traffic Phenomenon on Freeways with Limited-access Special Lanes

Author

Listed:
  • Cassidy, Michael J
  • Kim, Kwangho

Abstract

Most special-use freeway lanes in the US, whether reserved for carpools, toll-paying commuters or both, are physically separated from the adjacent regular-use lanes by some form of barrier. Vehicle movements in and out of a special lane of this type are permitted only at select access points along the route. The barrier at each select point might open for a distance of 400 m or so. Limiting access in this way is said to reduce the “turbulence” that might otherwise occur were the special lane not to have a buffer, such that vehicles could instead enter or exit that lane anywhere along its length. Yet, real freeway traffic studied in spatiotemporal fashion shows that access points are prone to become bottlenecks. The problem occurs when traffic in the regular lanes becomes dense, as commonly happens during a rush. Drivers then seek refuge in the special lane in greater numbers. Since the vehicular maneuvers through the access point are focused within a limited physical space, they can become disruptive and further degrade traffic. Degradation can occur both in the special lane and in the adjacent regular ones. The damage can be worse than what occurs when barrier are not used to limit special-lane ingress and egress. Policy implications are discussed.

Suggested Citation

  • Cassidy, Michael J & Kim, Kwangho, 2015. "Spatiotemporal Studies of Traffic Phenomenon on Freeways with Limited-access Special Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8j0585hg, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt8j0585hg
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/8j0585hg.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    2. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cassidy, Michael J. & Kim, Kwangho & Ni, Wei & Gu, Weihua, 2015. "A problem of limited-access special lanes. Part I: Spatiotemporal studies of real freeway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 307-319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long, 2017. "A first-order behavioral model of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 438-457.
    2. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    3. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    4. Taniguchi, Yohei & Nishi, Ryosuke & Ezaki, Takahiro & Nishinari, Katsuhiro, 2015. "Jam-absorption driving with a car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 304-315.
    5. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    6. Rodrigo C. Carlson & Ioannis Papamichail & Markos Papageorgiou & Albert Messmer, 2010. "Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering," Transportation Science, INFORMS, vol. 44(2), pages 238-253, May.
    7. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    8. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    9. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    10. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    11. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    12. Cassidy, Michael J & Jang, Kitae & Daganzo, Carlos F, 2008. "The Smoothing Effect of Carpool Lanes on Freeway Bottlenecks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6fk4s29c, Institute of Transportation Studies, UC Berkeley.
    13. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    14. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae, 2008. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6c69j2vv, Institute of Transportation Studies, UC Berkeley.
    15. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae & Chung, Koohong, 2006. "Empirical Reassessment of Traffic Operations: Freeway Bottlenecks and the Case for HOV Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt31h8z81t, Institute of Transportation Studies, UC Berkeley.
    16. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    17. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    18. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    19. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    20. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.

    More about this item

    Keywords

    Engineering; Managed lanes; Bottlenecks; Traffic congestion; Barriers; Carpool lanes; High occupancy vehicle lanes; Toll lanes;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt8j0585hg. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.