IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt70h664fh.html
   My bibliography  Save this paper

Weaving Analysis, Evaluation and Refinement

Author

Listed:
  • Skabardonis, Alexander
  • Kim, Amy

Abstract

Weaving sections are common design elements on freeway facilities such as near ramps and freeway to-freeway connectors. When the traffic demands exceed the capacity at weaving areas congestion may occur, which affects the operation of the entire freeway section. Traffic operational problems also may exist at weaving areas even when traffic demands are less than capacity because of the complexity of vehicle interactions, resulting in poor level of service (LOS) and potential safety problems. Existing procedures for the design and analysis of freeway weaving sections have several shortcomings, and their practical application often produces inconsistent results. This report describes the work performed under PATH Task Order 6304. The objective of the study was to evaluate the existing weaving analysis procedures to determine under which conditions the “best available” tools are most effective. The HCM2000, Leisch and Level D methods were evaluated using field data from 36 weaving sections for a total of 189 data points of speeds and volumes. A weaving performance matrix was developed to assist in determining which method to be used for a given mix of design and operational characteristics in a weaving section.

Suggested Citation

  • Skabardonis, Alexander & Kim, Amy, 2010. "Weaving Analysis, Evaluation and Refinement," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt70h664fh, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt70h664fh
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/70h664fh.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae & Chung, Koohong, 2006. "Empirical Reassessment of Traffic Operations: Freeway Bottlenecks and the Case for HOV Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt31h8z81t, Institute of Transportation Studies, UC Berkeley.
    2. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    2. Lee, Joon & Cassidy, Michael J, 2008. "An Empirical and Theoretical Study of Freeway Weave Bottlenecks," University of California Transportation Center, Working Papers qt2970816w, University of California Transportation Center.
    3. Banks, James H., 2003. "Average time gaps in congested freeway flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 539-554, July.
    4. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    5. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    6. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    7. Zhang, Lei & Levinson, David, 2010. "Ramp metering and freeway bottleneck capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
    8. Cassidy, Michael J. & Ahn, Soyoung, 2004. "Driver Turn-Taking Behavior in Congested Freeway Merges," University of California Transportation Center, Working Papers qt06j9k7h2, University of California Transportation Center.
    9. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    10. Tanzina Afrin & Nita Yodo, 2020. "A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient Transportation System," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    11. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    12. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    13. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    14. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
    15. Coifman, Benjamin & Kim, Seoungbum, 2011. "Extended bottlenecks, the fundamental relationship, and capacity drop on freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 980-991, November.
    16. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    17. Chen, Chao, 2003. "Freeway Performance Measurement System (PeMS)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j93p90t, Institute of Transportation Studies, UC Berkeley.
    18. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    19. Cassidy, Michael J & Jang, Kitae & Daganzo, Carlos F, 2008. "The Smoothing Effect of Carpool Lanes on Freeway Bottlenecks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6fk4s29c, Institute of Transportation Studies, UC Berkeley.
    20. Shen, Wei & Zhang, H.M., 2010. "Pareto-improving ramp metering strategies for reducing congestion in the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 676-696, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt70h664fh. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.