IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt2rg0957h.html
   My bibliography  Save this paper

Design Of A Machine Vision-based, Vehicle Actuated Traffic Signal Controller

Author

Listed:
  • Cassidy, Michael
  • Coifman, Benjamin

Abstract

This project presents a signal controller algorithm to capitalize on the extended information provided by wide-area detection at isolated intersections. Using computer simulation, different control strategies are evaluated and the performance of the proposed wide-area detection system with conventional signal controllers is compared. The results indicate that wide-area vehicle actuated (VA) control can yield significant improvements over conventional VA control strategies.

Suggested Citation

  • Cassidy, Michael & Coifman, Benjamin, 1998. "Design Of A Machine Vision-based, Vehicle Actuated Traffic Signal Controller," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2rg0957h, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt2rg0957h
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2rg0957h.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malik, Jitendra & Russell, Stuart, 1997. "Traffic Surveillance And Detection Technology Development: New Traffic Sensor Technology Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2941r5sq, Institute of Transportation Studies, UC Berkeley.
    2. Newell, Gordon F., 1989. "Theory of highway traffic signals," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7zn2b9bc, Institute of Transportation Studies, UC Berkeley.
    3. Yosef Sheffi & Hani Mahmassani, 1981. "A Model of Driver Behavior at High Speed Signalized Intersections," Transportation Science, INFORMS, vol. 15(1), pages 50-61, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo, Hong K., 1999. "A novel traffic signal control formulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 433-448, August.
    2. Bell, Michael G. H., 1995. "Stochastic user equilibrium assignment in networks with queues," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 125-137, April.
    3. Wang, Xiubin Bruce & Cao, Xiaowei & Wang, Changjun, 2017. "Dynamic optimal real-time algorithm for signals (DORAS): Case of isolated roadway intersections," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 433-446.
    4. Hong K. Lo, 2001. "A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans," Transportation Science, INFORMS, vol. 35(2), pages 148-164, May.
    5. Anthony G O Yeh & P C Lai & S C Wong & Nelson H C Yung, 2004. "The Architecture for a Real-Time Traffic Multimedia Internet Geographic Information System," Environment and Planning B, , vol. 31(3), pages 349-366, June.
    6. Moore, II, James E. & Cho, Seongkil & Basu, Arup & Mezger, Daniel B., 2001. "Use of Los Angeles Freeway Service Patrol Vehicles as Probe Vehicles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8qf8430v, Institute of Transportation Studies, UC Berkeley.
    7. Lin Xiao & Hong Lo, 2015. "Combined Route Choice and Adaptive Traffic Control in a Day-to-day Dynamical System," Networks and Spatial Economics, Springer, vol. 15(3), pages 697-717, September.
    8. Hall, Randolph W., 2001. "Incident Management: Process Analysis and Improvement," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1jf6j37t, Institute of Transportation Studies, UC Berkeley.
    9. Xuan, Yiguang & Daganzo, Carlos F. & Cassidy, Michael J., 2011. "Increasing the capacity of signalized intersections with separate left turn phases," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 769-781, June.
    10. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    11. Gu, Weihua & Cassidy, Michael J. & Gayah, Vikash V. & Ouyang, Yanfeng, 2012. "Strategies for Mitigating Impacts of Near-Side Bus Stops on Cars," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dp1d400, Institute of Transportation Studies, UC Berkeley.
    12. Zhang, Liping & Zhou, Kun & Zhang, Wei-bin & Misener, James A., 2011. "Dynamic All-Red Extension at Signalized Intersection: Probabilistic Modeling and Algorithm," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7kp0030b, Institute of Transportation Studies, UC Berkeley.
    13. Moon, Young J. & Coleman, Fred, 2003. "Dynamic dilemma zone based on driver behavior and car-following model at highway-rail intersections," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 323-344, May.
    14. Sadek, Bassel & Doig Godier, Jean & Cassidy, Michael J & Daganzo, Carlos F, 2022. "Traffic signal plans to decongest street grids," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 195-208.
    15. Yin, Yafeng & Liu, Henry X. & Laval, Jorge A. & Lu, Xiao-Yun & Li, Meng & Pilachowski, Joshua & Zhang, Wei-Bin, 2007. "Development of an Integrated Microscopic Traffic Simulation and Signal Timing Optimization Tool," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3r67f927, Institute of Transportation Studies, UC Berkeley.
    16. Juan Li & Xudong Jia & Chunfu Shao, 2016. "Predicting Driver Behavior during the Yellow Interval Using Video Surveillance," IJERPH, MDPI, vol. 13(12), pages 1-15, December.
    17. Lu, Guangquan & Wang, Yunpeng & Wu, Xinkai & Liu, Henry X., 2015. "Analysis of yellow-light running at signalized intersections using high-resolution traffic data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 39-52.
    18. Coifman, Benjamin Andre, 1998. "Vehicle Reidentification and Travel Time Measurement Using Loop Detector Speed Traps," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5d69n86x, Institute of Transportation Studies, UC Berkeley.
    19. Gu, Weihua & Cassidy, Michael J. & Gayah, Vikash V. & Ouyang, Yanfeng, 2013. "Mitigating negative impacts of near-side bus stops on cars," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 42-56.
    20. Lo, Hong K. & Chang, Elbert & Chan, Yiu Cho, 2001. "Dynamic network traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 721-744, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt2rg0957h. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.