IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt7624q040.html
   My bibliography  Save this paper

What Happened and Will Happen with Biofuels? Review and Prospects for Non-Conventional Biofuels in California and the U.S.: Supply, Cost, and Potential GHG Reductions

Author

Listed:
  • Witcover, Julie

Abstract

This paper examines past and future trends for non-conventional biofuels in transportation in the next decade and beyond in California and the U.S., drawing on existing literature. It finds policy was geared toward expanding use of technology-ready biofuels in the 2010s; hydroprocessed renewable diesel from lipid feedstocks and biogas were beneficiaries alongside conventional ethanol and biodiesel. Cellulosic ventures largely failed due to lack of technological readiness, high cost, and an uncertain and insufficient policy environment. Policy goals for competitive cellulosic fuels remain, yet fuels from technologies already in the market may suffice to meet low carbon fuel policy targets, at least in California until 2030, considerably more oilcrop-based biofuels. How much biofuel will be needed there and elsewhere to meet climate targets hinges critically on the pace and scope of zero emission vehicle, and particularly electric vehicle, rollout. Analysis of unintended market consequences like indirect land use change has evolved over the decade but remains uncertain; current policy structures do not comprehensively safeguard against increased emissions. Market activity for non-conventional fuels has targeted biojet. Pioneer plants using new conversion technologies, if successful, will take some time to scale. Technoeconomic analyses (TEAs) for such non-conventional fuels point to no clear biofuel conversion technology winner as yet, given uncertainties. TEAs are evolving to reduce uncertainty by concentrating more on robust returns in the face of uncertain policies, potential additional cost-cutting for new technologies given what is known about processes involved, and potential revenue-raising through new coproducts or shifting product slates. Policies are needed to make initial financing more secure. Additional policy and societal attention to appropriate use of biomass, and land more generally, in a low carbon future is needed to clarify likely feedstock supply for biofuels that will enhance climate goals with low risk of unintended consequences. View the NCST Project Webpage

Suggested Citation

  • Witcover, Julie, 2021. "What Happened and Will Happen with Biofuels? Review and Prospects for Non-Conventional Biofuels in California and the U.S.: Supply, Cost, and Potential GHG Reductions," Institute of Transportation Studies, Working Paper Series qt7624q040, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt7624q040
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7624q040.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriel E Lade & C-Y Cynthia Lin Lawell & Aaron Smith, 2018. "Designing Climate Policy: Lessons from the Renewable Fuel Standard and the Blend Wall," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 585-599.
    2. Brown, Tristan R. & Thilakaratne, Rajeeva & Brown, Robert C. & Hu, Guiping, 2013. "Regional differences in the economic feasibility of advanced biorefineries: Fast pyrolysis and hydroprocessing," Energy Policy, Elsevier, vol. 57(C), pages 234-243.
    3. Witcover, Julie & Yeh, Sonia & Sperling, Daniel, 2013. "Policy options to address global land use change from biofuels," Energy Policy, Elsevier, vol. 56(C), pages 63-74.
    4. Li, Lin & Ge, Yuntian, 2017. "System-level cost evaluation for economic viability of cellulosic biofuel manufacturing," Applied Energy, Elsevier, vol. 203(C), pages 711-722.
    5. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    6. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    7. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Yeh, Sonia & Witcover, Julie, 2016. "Status Review of California's Low Carbon Fuel Standard, 2011–2015," Institute of Transportation Studies, Working Paper Series qt6qs544vg, Institute of Transportation Studies, UC Davis.
    9. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fulton, Lew & Morrison, Geoff & Parker, Nathan & Witcover, Julie & Sperling, Dan, 2014. "Three Routes Forward For Biofuels: Incremental, Transitional, and Leapfrog," Institute of Transportation Studies, Working Paper Series qt3pp0g4fb, Institute of Transportation Studies, UC Davis.
    2. Mandegari, Mohsen & Ebadian, Mahmood & Saddler, Jack (John), 2023. "The need for effective life cycle assessment (LCA) to enhance the effectiveness of policies such as low carbon fuel standards (LCFS's)," Energy Policy, Elsevier, vol. 181(C).
    3. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    4. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.
    5. Oliveira, Gustavo de L.T. & McKay, Ben & Plank, Christina, 2017. "How biofuel policies backfire: Misguided goals, inefficient mechanisms, and political-ecological blind spots," Energy Policy, Elsevier, vol. 108(C), pages 765-775.
    6. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    7. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    8. Beike Sumfleth & Stefan Majer & Daniela Thrän, 2020. "Recent Developments in Low iLUC Policies and Certification in the EU Biobased Economy," Sustainability, MDPI, vol. 12(19), pages 1-34, October.
    9. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    10. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    11. Benes, Ondrej & Janda, Karel, 2022. "Environmental Dimensions of Biofuels," EconStor Preprints 259403, ZBW - Leibniz Information Centre for Economics.
    12. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    13. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    14. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    15. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    16. Knut Einar Rosendahl & Jon Strand, 2011. "Carbon Leakage from the Clean Development Mechanism," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 27-50.
    17. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    18. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    19. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    20. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    21. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    More about this item

    Keywords

    Business; Engineering; Biofuels; low carbon fuels; renewable energy sources; alternative fuel policy; Biomass fuels; Forecasting; Market assessment;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt7624q040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.