IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt36x5006p.html
   My bibliography  Save this paper

California Energy Demand Scenario Projections to 2050

Author

Listed:
  • McCarthy, Ryan
  • Yang, Christopher
  • Ogden, Joan M.

Abstract

This report describes five alternative scenarios for future energy demands in California, developed at UC Davis as part of the Advanced Energy Pathways (AEP) project. The Advanced Energy Pathways is a project of the California Energy Commission’s (CEC) Public Interest Energy Research (PIER) Program, with contributing researchers from the University of California, Davis (UCD); Lawrence Livermore National Laboratory (LLNL); Global Environment and Technology Foundation (GETF); and the University of California, Berkeley (UCB). The primary objective of the AEP is to analyze the impacts of alternative transportation energy pathways on California’s natural gas and electricity sectors through the year 2050. The scenarios presented here are intended to span a wide range of possible energy demand futures for California and provide an energy demand context for AEP’s analyses of integrated energy supply strategies. In this report we present a methodology for scenario development that enables us to quantify the electricity, natural gas, and transportation fuel demands between 2005 and 2050 for a range of demographic, economic, and technical assumptions. The scenarios provide transparent estimates of future energy demands that will feed into subsequent energy systems modeling. These future AEP studies will model future energy supplies and infrastructure in California to determine how these demands, as well as additional energy demands due to advanced transportation fuels and technologies, will be met.

Suggested Citation

  • McCarthy, Ryan & Yang, Christopher & Ogden, Joan M., 2008. "California Energy Demand Scenario Projections to 2050," Institute of Transportation Studies, Working Paper Series qt36x5006p, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt36x5006p
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/36x5006p.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Brożyna & Grzegorz Mentel & Eva Ivanová & Gennadii Sorokin, 2019. "Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States," Energies, MDPI, vol. 12(12), pages 1-22, June.
    2. Yang, Christopher & Yeh, Sonia & Zakerinia, Saleh & Ramea, Kalai & McCollum, David, 2015. "Achieving California's 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model," Energy Policy, Elsevier, vol. 77(C), pages 118-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan Bazilian & Patrick Nussbaumer & Hans-Holger Rogner & Abeeku Brew-Hammond & Vivien Foster & Shonali Pachauri & Eric Williams & Mark Howells & Philippe Niyongabo & Lawrence Musaba & Brian Ó Galla, 2011. "Energy Access Scenarios to 2030 for the Power Sector in Sub-Saharan Africa," Working Papers 2011.68, Fondazione Eni Enrico Mattei.
    2. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    3. Moreno, Blanca & López, Ana Jesús, 2008. "The effect of renewable energy on employment. The case of Asturias (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 732-751, April.
    4. Lilies Setiartiti, 2018. "Renewable Energy Utilizing for Clean Energy Development," International Journal of Energy Economics and Policy, Econjournals, vol. 8(1), pages 212-219.
    5. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring the energy system impacts of Nigeria's Nationally Determined Contributions and low-carbon transition to mid-century," Energy Policy, Elsevier, vol. 144(C).
    6. Lachman, Daniël A., 2011. "Leapfrog to the future: Energy scenarios and strategies for Suriname to 2050," Energy Policy, Elsevier, vol. 39(9), pages 5035-5044, September.
    7. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & Wood, David A., 2019. "A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports," Energy, Elsevier, vol. 169(C), pages 646-659.
    8. Mulugetta, Yacob & Mantajit, Nathinee & Jackson, Tim, 2007. "Power sector scenarios for Thailand: An exploratory analysis 2002-2022," Energy Policy, Elsevier, vol. 35(6), pages 3256-3269, June.
    9. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    10. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    11. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    12. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    13. Oliveira, Fabio Fava & Sousa, Duarte M. & Kotoviča, Nika, 2022. "Going beyond European emission targets: Pathways for an urban energy transition in the city of Riga," Energy, Elsevier, vol. 246(C).
    14. Antonio Angelo Romano & Giuseppe Scandurra, 2011. "The Investments in Renewable Energy Sources: Do Low Carbon Economies Better Invest In Green Technologies?," International Journal of Energy Economics and Policy, Econjournals, vol. 1(4), pages 107-115.
    15. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
    16. Ravindra, Kumudhini & Iyer, Parameshwar P., 2014. "Decentralized demand–supply matching using community microgrids and consumer demand response: A scenario analysis," Energy, Elsevier, vol. 76(C), pages 32-41.
    17. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    18. Grujić, Miodrag & Ivezić, Dejan & Živković, Marija, 2014. "Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade," Energy, Elsevier, vol. 67(C), pages 341-350.
    19. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Miguel, Luis Javier & Mediavilla, Margarita, 2022. "Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?," Energy, Elsevier, vol. 259(C).
    20. Sana Bashir & Iftikhar Ahmad & Sajid Rashid Ahmad, 2018. "Low-Emission Modeling for Energy Demand in the Household Sector: A Study of Pakistan as a Developing Economy," Sustainability, MDPI, vol. 10(11), pages 1-17, October.

    More about this item

    Keywords

    UCD-ITS-RR-08-11; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt36x5006p. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.