IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt2rv570tt.html
   My bibliography  Save this paper

The Effects of Ride Hailing Services on Travel and Associated Greenhouse Gas Emissions

Author

Listed:
  • Rodier, Caroline

Abstract

Towards the close of the first decade of the 21st Century, ride-hailing services began to enter the transportation market through smart phone applications that allowed consumers to hail and pay for a ride from drivers using their own vehicle. The information and communication technologies used by these platforms allow for more reliable service, to more locations, with shorter wait times, and at a lower cost than traditional taxi services and, perhaps, public transit. Today, an estimated 15% of adults across the U.S. and 21% in major cities have personally used these services. The successful entrance of ride-hailing services into the transportation market has raised questions about their effect on the overall transportation system, including congestion, total vehicle miles traveled (VMT), and greenhouse gas emissions (GHGs). Reliable answers are limited, in large part, because of their rapid expansion and the lack of publicly available data from these private ride-sharing companies. However, there is now a small body of research, most conducted in 2016 and 2017, that provides some initial evidence on the impacts of these services. This research includes population representative survey data, targeted ride-hailing user survey data, and measured ride-hailing driver and passenger activity data. In addition, the recent interest in automated vehicles has produced modeling studies that also provide insight into the potential effects of ride-hailing services. The following framework was developed to identify the range of possible travel effects, both positive and negative, on users of ride-hailing services. This includes the effects of ride-hailing on auto ownership, trip generation, destination choice, mode choice, network vehicle travel, and land use. View the NCST Project Webpage

Suggested Citation

  • Rodier, Caroline, 2018. "The Effects of Ride Hailing Services on Travel and Associated Greenhouse Gas Emissions," Institute of Transportation Studies, Working Paper Series qt2rv570tt, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt2rv570tt
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2rv570tt.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felipe F. Dias & Patrícia S. Lavieri & Venu M. Garikapati & Sebastian Astroza & Ram M. Pendyala & Chandra R. Bhat, 2017. "A behavioral choice model of the use of car-sharing and ride-sourcing services," Transportation, Springer, vol. 44(6), pages 1307-1323, November.
    2. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    3. Salon, Deborah, 2015. "Heterogeneity in the relationship between the built environment and driving: Focus on neighborhood type and travel purpose," Research in Transportation Economics, Elsevier, vol. 52(C), pages 34-45.
    4. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    5. Itf, 2015. "Urban Mobility System Upgrade: How shared self-driving cars could change city traffic," International Transport Forum Policy Papers 6, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Guang & Ewing, Reid & Li, Han, 2023. "Exploring the influences of ride-hailing services on VMT and transit usage – Evidence from California," Journal of Transport Geography, Elsevier, vol. 110(C).
    2. Lisa Dang & Widar von Arx & Jonas Frölicher, 2021. "The Impact of On-Demand Collective Transport Services on Sustainability: A Comparison of Various Service Options in a Rural and an Urban Area of Switzerland," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    3. Handy, Susan, 2020. "What California Gains from Reducing Car Dependence," Institute of Transportation Studies, Working Paper Series qt0hk0h610, Institute of Transportation Studies, UC Davis.
    4. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Association between the Regular Use of ICT Based Mobility Services and the Bicycle Mode Choice in Tehran and Cairo," IJERPH, MDPI, vol. 17(23), pages 1-19, November.
    5. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2019. "Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 11(12), pages 1-28, June.
    6. Atour Taghipour & Mohammad Ramezani & Moein Khazaei & Vahid Roohparvar & Erfan Hassannayebi, 2023. "Smart Transportation Behavior through the COVID-19 Pandemic: A Ride-Hailing System in Iran," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    7. Ouassim Manout & Azise-Oumar Diallo, 2023. "Better be private, shared, or pooled? Implications of three autonomous mobility scenarios in Lyon, France," Post-Print hal-04570546, HAL.
    8. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    9. Loa, Patrick & Nurul Habib, Khandker, 2021. "Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 13-28.
    10. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    11. Ong, Felita & Loa, Patrick & Nurul Habib, Khandker, 2024. "Ride-sourcing demand in Metro Vancouver: Looking through the lens of disability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    12. Wenyuan Gao & Chuyun Zhao & Yu Zeng & Jinjun Tang, 2024. "Exploring the Spatio-Temporally Heterogeneous Impact of Traffic Network Structure on Ride-Hailing Emissions Using Shenzhen, China, as a Case Study," Sustainability, MDPI, vol. 16(11), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    2. Shibayama, Takeru & Emberger, Günter, 2020. "New mobility services: Taxonomy, innovation and the role of ICTs," Transport Policy, Elsevier, vol. 98(C), pages 79-90.
    3. Alejandro Tirachini & Andres Gomez-Lobo, 2017. "Estabilidad Macroeconómica y Crecimiento Económico: Mitos y Realidades," Working Papers wp457, University of Chile, Department of Economics.
    4. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    5. Xiaowei Chen & Hongyu Zheng & Ze Wang & Xiqun Chen, 2021. "Exploring impacts of on-demand ridesplitting on mobility via real-world ridesourcing data and questionnaires," Transportation, Springer, vol. 48(4), pages 1541-1561, August.
    6. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    7. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    8. Martin, Elliot PhD & Shaheen, Susan PhD & Stocker, Adam, 2021. "Impacts of Transportation Network Companies on Vehicle Miles Traveled, Greenhouse Gas Emissions, and Travel Behavior Analysis from the Washington D.C., Los Angeles, and San Francisco Markets," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt90b6d7r3, Institute of Transportation Studies, UC Berkeley.
    9. Scott B. Kelley & Bradley W. Lane & John M. DeCicco, 2019. "Pumping the Brakes on Robot Cars: Current Urban Traveler Willingness to Consider Driverless Vehicles," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    10. Nunes, Ashley & Hernandez, Kristen D., 2020. "Autonomous taxis & public health: High cost or high opportunity cost?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 28-36.
    11. Pan, Shuai & Fulton, Lewis M. & Roy, Anirban & Jung, Jia & Choi, Yunsoo & Gao, H. Oliver, 2021. "Shared use of electric autonomous vehicles: Air quality and health impacts of future mobility in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Xiatian Wu & Don MacKenzie, 2022. "The evolution, usage and trip patterns of taxis & ridesourcing services: evidence from 2001, 2009 & 2017 US National Household Travel Survey," Transportation, Springer, vol. 49(1), pages 293-311, February.
    13. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.
    15. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    16. Rodier, Caroline & Jaller, Miguel & Pourrahmani, Elham & Bischoff, Joschka & Freedman, Joel & Pahwa, Anmol, 2018. "Automated Vehicle Scenarios: Simulation of System-Level Travel Effects Using Agent-Based Demand and Supply Models in the San Francisco Bay Area," Institute of Transportation Studies, Working Paper Series qt4dk3n531, Institute of Transportation Studies, UC Davis.
    17. Malik, Jai & Bunch, David S. & Handy, Susan & Circella, Giovanni, 2021. "A deeper investigation into the effect of the built environment on the use of ridehailing for non-work travel," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    19. Nair, Gopindra S. & Bhat, Chandra R. & Batur, Irfan & Pendyala, Ram M. & Lam, William H.K., 2020. "A model of deadheading trips and pick-up locations for ride-hailing service vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 289-308.
    20. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.

    More about this item

    Keywords

    Engineering; Automobile ownership; Greenhouse gases; Mode choice; Ridesourcing; Travel behavior; Trip generation; Vehicle miles of travel;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2rv570tt. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.