IDEAS home Printed from https://ideas.repec.org/p/cde/cdewps/323.html
   My bibliography  Save this paper

Unit Commitment in a Federalized Power Market: A Mixed Integer Programming Approach

Author

Listed:
  • Payal Mitra

    (Elsevier, Amsterdam)

  • Soumendu Sarkar

    (Department of Economics, Delhi School of Economics)

  • Tarun Mehta

    (Centre for Energy,Environment and Water,New Delhi)

  • Atul Kumar

    (School of International Studies,Jawaharlal Nehru University, New Delhi)

Abstract

We study the features of the Indian power system and deconstruct the factors that impede its transition to more optimised market mechanisms. We also present an adaptation of unit commitment from literature, tailored to India's characteristics. Such a model enables India-like power systems to transition to state-of-the-art combinatorial optimisation solution techniques such as Mixed Integer Liner Programming. Further, by simulating the unit commitment problem for the state of Rajasthan with actual data from the year 2015-16, we demonstrate the possibility of significant savings for a central planner in procuring and scheduling adequate power to meet its demands securely. Key Words: Unit Commitment, Power Markets, Energy, Electricity, Mathematical Programming JEL Codes: C61, Q41, Q42

Suggested Citation

  • Payal Mitra & Soumendu Sarkar & Tarun Mehta & Atul Kumar, 2022. "Unit Commitment in a Federalized Power Market: A Mixed Integer Programming Approach," Working papers 323, Centre for Development Economics, Delhi School of Economics.
  • Handle: RePEc:cde:cdewps:323
    as

    Download full text from publisher

    File URL: http://www.cdedse.org/pdf/work323.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    2. Richardson, David B. & Harvey, L.D.D., 2015. "Strategies for correlating solar PV array production with electricity demand," Renewable Energy, Elsevier, vol. 76(C), pages 432-440.
    3. Nazari, M.E. & Ardehali, M.M. & Jafari, S., 2010. "Pumped-storage unit commitment with considerations for energy demand, economics, and environmental constraints," Energy, Elsevier, vol. 35(10), pages 4092-4101.
    4. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    5. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    6. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    7. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
    8. John A. Muckstadt & Sherri A. Koenig, 1977. "An Application of Lagrangian Relaxation to Scheduling in Power-Generation Systems," Operations Research, INFORMS, vol. 25(3), pages 387-403, June.
    9. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    10. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    2. Jerez, S. & Tobin, I. & Turco, M. & Jiménez-Guerrero, P. & Vautard, R. & Montávez, J.P., 2019. "Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe," Renewable Energy, Elsevier, vol. 139(C), pages 251-260.
    3. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    4. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    5. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    6. Fattori, Fabrizio & Anglani, Norma & Staffell, Iain & Pfenninger, Stefan, 2017. "High solar photovoltaic penetration in the absence of substantial wind capacity: Storage requirements and effects on capacity adequacy," Energy, Elsevier, vol. 137(C), pages 193-208.
    7. Africa Lopez-Rey & Severo Campinez-Romero & Rosario Gil-Ortego & Antonio Colmenar-Santos, 2019. "Evaluation of Supply–Demand Adaptation of Photovoltaic–Wind Hybrid Plants Integrated into an Urban Environment," Energies, MDPI, vol. 12(9), pages 1-24, May.
    8. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    9. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    10. Liao, Shiwu & Yao, Wei & Han, Xingning & Wen, Jinyu & Cheng, Shijie, 2017. "Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data," Applied Energy, Elsevier, vol. 203(C), pages 816-828.
    11. Dahlke, Steven & Sterling, John & Meehan, Colin, 2019. "Policy and market drivers for advancing clean energy," OSF Preprints hsbry, Center for Open Science.
    12. António Couto & Ana Estanqueiro, 2020. "Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand," Energies, MDPI, vol. 13(16), pages 1-21, August.
    13. Deetjen, Thomas A. & Garrison, Jared B. & Rhodes, Joshua D. & Webber, Michael E., 2016. "Solar PV integration cost variation due to array orientation and geographic location in the Electric Reliability Council of Texas," Applied Energy, Elsevier, vol. 180(C), pages 607-616.
    14. Han, Shuang & Zhang, Lu-na & Liu, Yong-qian & Zhang, Hao & Yan, Jie & Li, Li & Lei, Xiao-hui & Wang, Xu, 2019. "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," Applied Energy, Elsevier, vol. 236(C), pages 973-984.
    15. Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
    16. Kim, James Hyungkwan & Mills, Andrew D. & Wiser, Ryan & Bolinger, Mark & Gorman, Will & Crespo Montañes, Cristina & O'Shaughnessy, Eric, 2021. "Project developer options to enhance the value of solar electricity as solar and storage penetrations increase," Applied Energy, Elsevier, vol. 304(C).
    17. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    18. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    19. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.

    More about this item

    Keywords

    unit commitment; power markets; energy; electricity; mathematical programming jel codes: c61; q41; q42;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cde:cdewps:323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sanjeev Sharma (email available below). General contact details of provider: https://edirc.repec.org/data/cdudein.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.