IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/504.html
   My bibliography  Save this paper

Solvency requirement in a unisex mortality model

Author

Listed:
  • An Chen
  • Montserrat Guillen
  • Elena Vigna

Abstract

Following the EU Gender Directive, that obliges insurance companies to charge the same premium to policyholders of different genders, we address the issue of calculating solvency capital requirements (SCRs) for pure endowments and annuities issued to mixed portfolios. The main theoretical result is that, if the unisex fairness principle is adopted for the unisex premium, the SCR of the mixed portfolio calculated at issuing time assuming unisex survivorship is greater than the sum of the SCRs of the gender based subportfolios. Numerical results show that for pure endowments the gap between the two is negligible, but for lifetime annuity the gap can be as high as 3-4%. We also analyze some conservative pricing procedures that deviate from the unisex fairness principle, and find that they lead to SCRs that are lower than the sum of the gender based SCRs, because the policyholders are overcharged at issuing time.

Suggested Citation

  • An Chen & Montserrat Guillen & Elena Vigna, 2017. "Solvency requirement in a unisex mortality model," Carlo Alberto Notebooks 504, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:504
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.504.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, An & Vigna, Elena, 2017. "A unisex stochastic mortality model to comply with EU Gender Directive," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 124-136.
    2. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    3. Milevsky, Moshe A. & Salisbury, Thomas S., 2015. "Optimal retirement income tontines," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 91-105.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    6. Olivieri, Annamaria & Pitacco, Ermanno, 2009. "Stochastic Mortality: The Impact on Target Capital," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 541-563, November.
    7. Yijia Lin & Samuel H. Cox, 2005. "Securitization of Mortality Risks in Life Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 227-252, June.
    8. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    9. Vijay Aseervatham & Christoph Lex & Spindler, Martin, 2014. "How do unisex rating regulations affect gender differences in insurance premiums?," MEA discussion paper series 201416, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    10. Guillén, Montserrat, 2012. "Sexless and beautiful data: from quantity to quality," Annals of Actuarial Science, Cambridge University Press, vol. 6(02), pages 231-234, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    2. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    5. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    6. Chen, An & Vigna, Elena, 2017. "A unisex stochastic mortality model to comply with EU Gender Directive," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 124-136.
    7. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    8. Shang, Zhaoning & Goovaerts, Marc & Dhaene, Jan, 2011. "A recursive approach to mortality-linked derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 240-248, September.
    9. An Chen & Elena Vigna, 2015. "A unisex stochastic mortality model to comply with EU Gender Directive," Carlo Alberto Notebooks 440, Collegio Carlo Alberto.
    10. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    11. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    12. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    13. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    14. Date, P. & Mamon, R. & Jalen, L. & Wang, I.C., 2010. "A linear algebraic method for pricing temporary life annuities and insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 98-104, August.
    15. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    16. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    17. Blake, David & Brockett, Patrick & Cox, Samuel & MacMinn, Richard, 2011. "Longevity risk and capital markets: The 2009-2010 update," MPRA Paper 28868, University Library of Munich, Germany.
    18. Elisa Luciano & Elena Vigna, 2005. "A note on stochastic survival probabilities and their calibration," ICER Working Papers - Applied Mathematics Series 1-2005, ICER - International Centre for Economic Research.
    19. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David, 2006. "Mortality-dependent financial risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 427-440, June.
    20. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.

    More about this item

    Keywords

    SCR; life insurance pricing; unisex tariff; unisex fairness principle; life table; risk margin; Gender Directive; gender discrimination.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.