IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i3p910-929.html
   My bibliography  Save this article

Asymptotics for statistical functionals of long-memory sequences

Author

Listed:
  • Beutner, Eric
  • Wu, Wei Biao
  • Zähle, Henryk

Abstract

We present two general results that can be used to obtain asymptotic properties for statistical functionals based on linear long-memory sequences. As examples for the first one we consider L- and V-statistics, in particular tail-dependent L-statistics as well as V-statistics with unbounded kernels. As an example for the second result we consider degenerate V-statistics. To prove these results we also establish a weak convergence result for empirical processes of linear long-memory sequences, which improves earlier ones.

Suggested Citation

  • Beutner, Eric & Wu, Wei Biao & Zähle, Henryk, 2012. "Asymptotics for statistical functionals of long-memory sequences," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 910-929.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:3:p:910-929
    DOI: 10.1016/j.spa.2011.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911002675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2011.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    2. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.
    3. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    4. Wang, Shaun & Dhaene, Jan, 1998. "Comonotonicity, correlation order and premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 235-242, July.
    5. Beutner, Eric & Zähle, Henryk, 2010. "A modified functional delta method and its application to the estimation of risk functionals," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2452-2463, November.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buchsteiner, Jannis, 2015. "Weak convergence of the weighted sequential empirical process of some long-range dependent data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 170-179.
    2. Henryk Zähle, 2014. "Qualitative robustness of von Mises statistics based on strongly mixing data," Statistical Papers, Springer, vol. 55(1), pages 157-167, February.
    3. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    4. Lee, Ji Hyung & Linton, Oliver & Whang, Yoon-Jae, 2020. "Quantilograms Under Strong Dependence," Econometric Theory, Cambridge University Press, vol. 36(3), pages 457-487, June.
    5. Krätschmer Volker & Schied Alexander & Zähle Henryk, 2015. "Quasi-Hadamard differentiability of general risk functionals and its application," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 25-47, April.
    6. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2014. "Quasi-Hadamard differentiability of general risk functionals and its application," Papers 1401.3167, arXiv.org, revised Feb 2015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krätschmer Volker & Schied Alexander & Zähle Henryk, 2015. "Quasi-Hadamard differentiability of general risk functionals and its application," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 25-47, April.
    2. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2014. "Quasi-Hadamard differentiability of general risk functionals and its application," Papers 1401.3167, arXiv.org, revised Feb 2015.
    3. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    4. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    5. Marta Cardin & Graziella Pacelli, 2008. "Characterization of Convex Premium Principles," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 53-60, Springer.
    6. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“The use of flexible quantile-based measures in risk assessment”," IREA Working Papers 201323, University of Barcelona, Research Institute of Applied Economics, revised Dec 2013.
    7. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    8. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    9. Mustapha Ridaoui & Michel Grabisch, 2016. "Choquet integral calculus on a continuous support and its applications," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(1), pages 73-93.
    10. Choo, Weihao & de Jong, Piet, 2016. "Insights to systematic risk and diversification across a joint probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 142-150.
    11. Marta Cardin & Graziella Pacelli, 2005. "On characterization of a class of convex operators for pricing insurance risks," Game Theory and Information 0511011, University Library of Munich, Germany.
    12. repec:hal:pseose:hal-01373325 is not listed on IDEAS
    13. repec:hum:wpaper:sfb649dp2016-001 is not listed on IDEAS
    14. Mario Ghossoub & Jesse Hall & David Saunders, 2020. "Maximum Spectral Measures of Risk with given Risk Factor Marginal Distributions," Papers 2010.14673, arXiv.org.
    15. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    16. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    17. Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2012. "Qualitative and infinitesimal robustness of tail-dependent statistical functionals," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 35-47, January.
    18. Santos, Samuel S. & Moresco, Marlon R. & Righi, Marcelo B. & Horta, Eduardo, 2024. "A note on the induction of comonotonic additive risk measures from acceptance sets," Statistics & Probability Letters, Elsevier, vol. 208(C).
    19. Soren Bettels & Stefan Weber, 2024. "An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models," Papers 2408.02401, arXiv.org.
    20. Krätschmer, Volker & Zähle, Henryk, 2010. "Sensitivity of risk measures with respect to the normal approximation of total claim distributions," SFB 649 Discussion Papers 2010-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    22. Li, Linyuan, 2003. "On Koul's minimum distance estimators in the regression models with long memory moving averages," Stochastic Processes and their Applications, Elsevier, vol. 105(2), pages 257-269, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:3:p:910-929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.