IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0706.1836.html
   My bibliography  Save this paper

Long Memory in Nonlinear Processes

Author

Listed:
  • Rohit Deo

    (IOMS)

  • Meng-Chen Hsieh

    (IOMS)

  • Clifford M. Hurvich

    (IOMS)

  • Philippe Soulier

    (MODAL'X)

Abstract

It is generally accepted that many time series of practical interest exhibit strong dependence, i.e., long memory. For such series, the sample autocorrelations decay slowly and log-log periodogram plots indicate a straight-line relationship. This necessitates a class of models for describing such behavior. A popular class of such models is the autoregressive fractionally integrated moving average (ARFIMA) which is a linear process. However, there is also a need for nonlinear long memory models. For example, series of returns on financial assets typically tend to show zero correlation, whereas their squares or absolute values exhibit long memory. Furthermore, the search for a realistic mechanism for generating long memory has led to the development of other nonlinear long memory models. In this chapter, we will present several nonlinear long memory models, and discuss the properties of the models, as well as associated parametric andsemiparametric estimators.

Suggested Citation

  • Rohit Deo & Meng-Chen Hsieh & Clifford M. Hurvich & Philippe Soulier, 2007. "Long Memory in Nonlinear Processes," Papers 0706.1836, arXiv.org.
  • Handle: RePEc:arx:papers:0706.1836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0706.1836
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    2. Paul Doukhan & Gilles Teyssière & Pablo Winant, 2005. "A Larch Vector Valued Process," Working Papers 2005-49, Center for Research in Economics and Statistics.
    3. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
    4. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 686-710, August.
    5. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(1), pages 44-79, February.
    6. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    7. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    8. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    9. Robinson, P. M., 2001. "The memory of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 101(2), pages 195-218, April.
    10. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 445-470.
    11. Rohit Deo & Clifford Hurvich & Philippe Soulier & Yi Wang, 2005. "Propagation of Memory Parameter from Durations to Counts," Econometrics 0511010, University Library of Munich, Germany.
    12. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    13. Rohit Deo & Mengchen Hsieh & Clifford Hurvich, 2005. "Tracing the Source of Long Memory in Volatility," Econometrics 0501005, University Library of Munich, Germany.
    14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    15. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    16. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    17. Giraitis, Liudas & Surgailis, Donatas, 0. "ARCH-type bilinear models with double long memory," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 275-300, July.
    18. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    19. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    20. Chen, Willa W. & Hurvich, Clifford M. & Lu, Yi, 2006. "On the Correlation Matrix of the Discrete Fourier Transform and the Fast Solution of Large Toeplitz Systems for Long-Memory Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 812-822, June.
    21. Hurvich, Clifford M. & Soulier, Philippe, 2002. "Testing For Long Memory In Volatility," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1291-1308, December.
    22. Peter M Robinson, 2001. "The Memory of Stochastic Volatility Models," STICERD - Econometrics Paper Series 410, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    23. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    24. David Heath & Sidney Resnick & Gennady Samorodnitsky, 1998. "Heavy Tails and Long Range Dependence in On/Off Processes and Associated Fluid Models," Mathematics of Operations Research, INFORMS, vol. 23(1), pages 145-165, February.
    25. Robinson, Peter M., 2001. "The memory of stochastic volatility models," LSE Research Online Documents on Economics 2298, London School of Economics and Political Science, LSE Library.
    26. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kulik, Rafal & Soulier, Philippe, 2011. "The tail empirical process for long memory stochastic volatility sequences," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 109-134, January.
    2. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    3. Kuswanto, Heri & Sibbertsen, Philipp, 2008. "A Study on "Spurious Long Memory in Nonlinear Time Series Models"," Hannover Economic Papers (HEP) dp-410, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. repec:ehu:biltok:5570 is not listed on IDEAS
    3. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    4. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series 497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    6. Dalla, Violetta & Giraitis, Liudas & Hidalgo, Javier, 2006. "Consistent estimation of the memory parameter for nonlinear time series," LSE Research Online Documents on Economics 6813, London School of Economics and Political Science, LSE Library.
    7. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    8. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    9. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    10. da Silva, Afonso Gonçalves & Robinson, Peter M., 2008. "Fractional Cointegration In Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1207-1253, October.
    11. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    12. repec:ehu:biltok:5665 is not listed on IDEAS
    13. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    14. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    15. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    16. David Mcmillan & Alan Speight, 2008. "Long-memory in high-frequency exchange rate volatility under temporal aggregation," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 251-261.
    17. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    18. Zaffaroni, Paolo & d'Italia, Banca, 2003. "Gaussian inference on certain long-range dependent volatility models," Journal of Econometrics, Elsevier, vol. 115(2), pages 199-258, August.
    19. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    20. Rosenbaum, Mathieu, 2008. "Estimation of the volatility persistence in a discretely observed diffusion model," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1434-1462, August.
    21. Jensen Mark J., 2016. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0706.1836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.