IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v35y2017i4p598-610.html
   My bibliography  Save this article

Parameter Estimation Robust to Low-Frequency Contamination

Author

Listed:
  • Adam McCloskey
  • Jonathan B. Hill

Abstract

We provide methods to robustly estimate the parameters of stationary ergodic short-memory time series models in the potential presence of additive low-frequency contamination. The types of contamination covered include level shifts (changes in mean) and monotone or smooth time trends, both of which have been shown to bias parameter estimates toward regions of persistence in a variety of contexts. The estimators presented here minimize trimmed frequency domain quasi-maximum likelihood (FDQML) objective functions without requiring specification of the low-frequency contaminating component. When proper sample size-dependent trimmings are used, the FDQML estimators are consistent and asymptotically normal, asymptotically eliminating the presence of any spurious persistence. These asymptotic results also hold in the absence of additive low-frequency contamination, enabling the practitioner to robustly estimate model parameters without prior knowledge of whether contamination is present. Popular time series models that fit into the framework of this article include autoregressive moving average (ARMA), stochastic volatility, generalized autoregressive conditional heteroscedasticity (GARCH), and autoregressive conditional heteroscedasticity (ARCH) models. We explore the finite sample properties of the trimmed FDQML estimators of the parameters of some of these models, providing practical guidance on trimming choice. Empirical estimation results suggest that a large portion of the apparent persistence in certain volatility time series may indeed be spurious. Supplementary materials for this article are available online.

Suggested Citation

  • Adam McCloskey & Jonathan B. Hill, 2017. "Parameter Estimation Robust to Low-Frequency Contamination," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 598-610, October.
  • Handle: RePEc:taf:jnlbes:v:35:y:2017:i:4:p:598-610
    DOI: 10.1080/07350015.2015.1093948
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1093948
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1093948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    2. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
    3. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    4. Tommaso Proietti & Niels Haldrup & Oskar Knapik, 2017. "Spikes and memory in (Nord Pool) electricity price spot prices," CREATES Research Papers 2017-39, Department of Economics and Business Economics, Aarhus University.
    5. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    6. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.
    7. Alessandro Casini & Taosong Deng & Pierre Perron, 2021. "Theory of Low Frequency Contamination from Nonstationarity and Misspecification: Consequences for HAR Inference," Papers 2103.01604, arXiv.org, revised Sep 2024.
    8. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    9. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    10. Gabriel Rodríguez, 2016. "Modeling Latin-American Stock and Forex Markets Volatility: Empirical Application of a Model with Random Level Shifts and Genuine Long Memory [Modelando la volatilidad de los mercados bursátiles y cam," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
    11. Denis Tkachenko & Zhongjun Qu, 2012. "Frequency Domain Analysis of Medium Scale DSGE Models with Application to Smets and Wouters (2007)," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 319-385, Emerald Group Publishing Limited.
    12. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
    13. Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
    14. Matei Demetrescu & Mehdi Hosseinkouchack, 2022. "Autoregressive spectral estimates under ignored changes in the mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 329-340, March.
    15. Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:35:y:2017:i:4:p:598-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.