IDEAS home Printed from https://ideas.repec.org/p/bon/boncrc/crctr224_2021_257.html
   My bibliography  Save this paper

High-Frequency Trading and Price Informativeness

Author

Listed:
  • Jasmin Gider
  • Simon N. M. Schmickler
  • Christian Westheide

Abstract

We study how stock price informativeness changes with the presence of high-frequency trading (HFT). Our estimate is based on the staggered start of HFT participation in a panel of international exchanges. With HFT presence market prices are a less reliable predictor of future cash flows and investment, even more so for longer horizons. Further, idiosyncratic volatility decreases, mutual funds trade less actively and their holdings deviate less from the market-capitalization weighted portfolio. These findings suggest that price informativeness declines with HFT presence, consistent with theoretical models of HFTs' ability to anticipate informed order flow, reducing incentives to acquire fundamental information.

Suggested Citation

  • Jasmin Gider & Simon N. M. Schmickler & Christian Westheide, 2021. "High-Frequency Trading and Price Informativeness," CRC TR 224 Discussion Paper Series crctr224_2021_257, University of Bonn and University of Mannheim, Germany.
  • Handle: RePEc:bon:boncrc:crctr224_2021_257
    as

    Download full text from publisher

    File URL: https://www.crctr224.de/research/discussion-papers/archive/dp257
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doron Israeli & Charles M. C. Lee & Suhas A. Sridharan, 2017. "Is there a dark side to exchange traded funds? An information perspective," Review of Accounting Studies, Springer, vol. 22(3), pages 1048-1083, September.
    2. Liyan Yang & Haoxiang Zhu, 2020. "Back-Running: Seeking and Hiding Fundamental Information in Order Flows," Review of Finance, European Finance Association, vol. 33(4), pages 1484-1533.
    3. Aitken, Michael & Cumming, Douglas & Zhan, Feng, 2015. "High frequency trading and end-of-day price dislocation," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 330-349.
    4. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    5. Michael Goldstein & Jonathan Brogaard & Terrence Hendershott & Stefan Hunt & Carla Ysusi, 2014. "High-Frequency Trading and the Execution Costs of Institutional Investors," The Financial Review, Eastern Finance Association, vol. 49(2), pages 345-369, May.
    6. Carrion, Allen, 2013. "Very fast money: High-frequency trading on the NASDAQ," Journal of Financial Markets, Elsevier, vol. 16(4), pages 680-711.
    7. Lawrence Glosten & Suresh Nallareddy & Yuan Zou, 2021. "ETF Activity and Informational Efficiency of Underlying Securities," Management Science, INFORMS, vol. 67(1), pages 22-47, January.
    8. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    9. Jacobs, Heiko, 2016. "Market maturity and mispricing," Journal of Financial Economics, Elsevier, vol. 122(2), pages 270-287.
    10. Marcin Kacperczyk & Savitar Sundaresan & Tianyu Wang & Wei Jiang, 2021. "Do Foreign Institutional Investors Improve Price Efficiency? [Does governance travel around the world? Evidence from institutional investors]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1317-1367.
    11. Thierry Foucault & Johan Hombert & Ioanid Roşu, 2016. "News Trading and Speed," Journal of Finance, American Finance Association, vol. 71(1), pages 335-382, February.
    12. Artyom Durnev & Randall Morck & Bernard Yeung & Paul Zarowin, 2003. "Does Greater Firm‐Specific Return Variation Mean More or Less Informed Stock Pricing?," Journal of Accounting Research, Wiley Blackwell, vol. 41(5), pages 797-836, December.
    13. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    14. Maryam Farboodi & Adrien Matray & Laura Veldkamp & Venky Venkateswaran, 2020. "Where Has All the Data Gone?," NBER Working Papers 26927, National Bureau of Economic Research, Inc.
    15. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    16. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    17. James Dow & Itay Goldstein & Alexander Guembel, 2017. "Incentives for Information Production in Markets where Prices Affect Real Investment," Journal of the European Economic Association, European Economic Association, vol. 15(4), pages 877-909.
    18. Conrad, Jennifer & Wahal, Sunil & Xiang, Jin, 2015. "High-frequency quoting, trading, and the efficiency of prices," Journal of Financial Economics, Elsevier, vol. 116(2), pages 271-291.
    19. Albert J. Menkveld, 2016. "The Economics of High-Frequency Trading: Taking Stock," Annual Review of Financial Economics, Annual Reviews, vol. 8(1), pages 1-24, October.
    20. Vincent Van Kervel & Albert J. Menkveld, 2019. "High‐Frequency Trading around Large Institutional Orders," Journal of Finance, American Finance Association, vol. 74(3), pages 1091-1137, June.
    21. David R. Meyer & George Guernsey, 2017. "Hong Kong and Singapore exchanges confront high frequency trading," Asia Pacific Business Review, Taylor & Francis Journals, vol. 23(1), pages 63-89, January.
    22. Hitesh Doshi & Redouane Elkamhi & Mikhail Simutin, 2015. "Managerial Activeness and Mutual Fund Performance," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 5(2), pages 156-184.
    23. Dugast, Jérôme & Foucault, Thierry, 2018. "Data abundance and asset price informativeness," Journal of Financial Economics, Elsevier, vol. 130(2), pages 367-391.
    24. Jonathan Brogaard & Björn Hagströmer & Lars Nordén & Ryan Riordan, 2015. "Trading Fast and Slow: Colocation and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 28(12), pages 3407-3443.
    25. Qi Chen & Itay Goldstein & Wei Jiang, 2007. "Price Informativeness and Investment Sensitivity to Stock Price," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 619-650.
    26. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    27. Philip Bond & Alex Edmans & Itay Goldstein, 2012. "The Real Effects of Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 339-360, October.
    28. Liyan Yang & Haoxiang Zhu, 2020. "Back-Running: Seeking and Hiding Fundamental Information in Order Flows," The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1484-1533.
    29. Alex Edmans & Itay Goldstein & Wei Jiang, 2012. "The Real Effects of Financial Markets: The Impact of Prices on Takeovers," Journal of Finance, American Finance Association, vol. 67(3), pages 933-971, June.
    30. Nuno Fernandes & Miguel A. Ferreira, 2009. "Insider Trading Laws and Stock Price Informativeness," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1845-1887, May.
    31. Markus Baldauf & Joshua Mollner, 2020. "High‐Frequency Trading and Market Performance," Journal of Finance, American Finance Association, vol. 75(3), pages 1495-1526, June.
    32. Hirshleifer, Jack, 1971. "The Private and Social Value of Information and the Reward to Inventive Activity," American Economic Review, American Economic Association, vol. 61(4), pages 561-574, September.
    33. Robert A Korajczyk & Dermot Murphy, 2019. "High-Frequency Market Making to Large Institutional Trades," The Review of Financial Studies, Society for Financial Studies, vol. 32(3), pages 1034-1067.
    34. Alex Edmans & Itay Goldstein & Wei Jiang, 2015. "Feedback Effects, Asymmetric Trading, and the Limits to Arbitrage," American Economic Review, American Economic Association, vol. 105(12), pages 3766-3797, December.
    35. Malceniece, Laura & Malcenieks, Kārlis & Putniņš, Tālis J., 2019. "High frequency trading and comovement in financial markets," Journal of Financial Economics, Elsevier, vol. 134(2), pages 381-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qizhi, 2022. "Identifying and correcting the defects of the Saaty analytic hierarchy/network process: A comparative study of the Saaty analytic hierarchy/network process and the Markov chain-based analytic network ," Operations Research Perspectives, Elsevier, vol. 9(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gider, Jasmin & Schmickler, Simon & Westheide, Christian, 2019. "High-frequency trading and price informativeness," SAFE Working Paper Series 248, Leibniz Institute for Financial Research SAFE, revised 2019.
    2. Sagade, Satchit & Scharnowski, Stefan & Westheide, Christian, 2022. "Broker colocation and the execution costs of customer and proprietary orders," SAFE Working Paper Series 366, Leibniz Institute for Financial Research SAFE.
    3. Aliyev, Nihad & Huseynov, Fariz & Rzayev, Khaladdin, 2022. "Algorithmic trading and investment-to-price sensitivity," LSE Research Online Documents on Economics 118844, London School of Economics and Political Science, LSE Library.
    4. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    5. Sánchez Serrano Antonio, 2020. "High-Frequency Trading and Systemic Risk: A Structured Review of Findings and Policies," Review of Economics, De Gruyter, vol. 71(3), pages 169-195, December.
    6. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    7. Ziyi Xu & Xue Cheng, 2023. "The Effects of High-frequency Anticipatory Trading: Small Informed Trader vs. Round-Tripper," Papers 2304.13985, arXiv.org, revised Feb 2024.
    8. Ye, Mao & Zheng, Miles Y. & Zhu, Wei, 2023. "The effect of tick size on managerial learning from stock prices," Journal of Accounting and Economics, Elsevier, vol. 75(1).
    9. Nimalendran, Mahendrarajah & Rzayev, Khaladdin & Sagade, Satchit, 2022. "High-frequency trading in the stock market and the costs of option market making," LSE Research Online Documents on Economics 118885, London School of Economics and Political Science, LSE Library.
    10. Dodd, Olga & Frijns, Bart & Indriawan, Ivan & Pascual, Roberto, 2023. "US cross-listing and domestic high-frequency trading: Evidence from Canadian stocks," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 301-320.
    11. Corey Garriot & Ryan Riordan, 2020. "Trading on Long-term Information," Staff Working Papers 20-20, Bank of Canada.
    12. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    13. Itay Goldstein, 2023. "Information in Financial Markets and Its Real Effects," Review of Finance, European Finance Association, vol. 27(1), pages 1-32.
    14. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    15. Ziyi Xu & Xue Cheng, 2024. "Trading Large Orders in the Presence of Multiple High-Frequency Anticipatory Traders," Papers 2403.08202, arXiv.org.
    16. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    17. Yunsen Chen & Jianqiao Huang & Xiao Li & Qingbo Yuan, 2022. "Does stock market liberalization improve stock price efficiency? Evidence from China," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 49(7-8), pages 1175-1210, July.
    18. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    19. Thanh Huong Nguyen, 2019. "Information and Noise in Stock Markets: Evidence on the Determinants and Effects Using New Empirical Measures," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 7-2019, January-A.
    20. Breckenfelder, Johannes, 2024. "Competition among high-frequency traders and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 166(C).

    More about this item

    Keywords

    High-Frequency Trading; Price Efficiency; Information Acquisition; Information Production;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bon:boncrc:crctr224_2021_257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CRC Office (email available below). General contact details of provider: https://www.crctr224.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.