IDEAS home Printed from https://ideas.repec.org/p/bis/biswps/1179.html
   My bibliography  Save this paper

The impact of artificial intelligence on output and inflation

Author

Listed:
  • Iñaki Aldasoro
  • Sebastian Doerr
  • Leonardo Gambacorta
  • Daniel Rees

Abstract

This paper studies the effects of artificial intelligence (AI) on sectoral and aggregate employment, output and inflation in both the short and long run. We construct an index of industry exposure to AI to calibrate a macroeconomic multi-sector model. Building on studies that find significant increases in workers' output from AI, we model AI as a permanent increase in productivity that differs by sector. We find that AI significantly raises output, consumption and investment in the short and long run. The inflation response depends crucially on households' and firms' anticipation of the impact of AI. If they do not anticipate higher future productivity, AI adoption is initially disinflationary. Over time, general equilibrium forces lead to moderate inflation through demand effects. In contrast, when households and firms anticipate higher future productivity, inflation rises immediately. Inspecting individual sectors and performing counterfactual exercises we find that a sector's initial exposure to AI has little correlation with its long-term increase in output. However, output grows by twice as much for the same increase in aggregate productivity when AI affects sectors producing consumption rather than investment goods, thanks to second round effects through sectoral linkages. We discuss how public policy should foster AI adoption and implications for central banks.

Suggested Citation

  • Iñaki Aldasoro & Sebastian Doerr & Leonardo Gambacorta & Daniel Rees, 2024. "The impact of artificial intelligence on output and inflation," BIS Working Papers 1179, Bank for International Settlements.
  • Handle: RePEc:bis:biswps:1179
    as

    Download full text from publisher

    File URL: https://www.bis.org/publ/work1179.pdf
    File Function: Full PDF document
    Download Restriction: no

    File URL: https://www.bis.org/publ/work1179.htm
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, June.
    2. Babina, Tania & Fedyk, Anastassia & He, Alex & Hodson, James, 2024. "Artificial intelligence, firm growth, and product innovation," Journal of Financial Economics, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aldasoro, Iñaki & Armantier, Olivier & Doerr, Sebastian & Gambacorta, Leonardo & Oliviero, Tommaso, 2024. "The gen AI gender gap," Economics Letters, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonioli, Davide & Marzucchi, Alberto & Rentocchini, Francesco & Vannuccini, Simone, 2024. "Robot adoption and product innovation," Research Policy, Elsevier, vol. 53(6).
    2. Nicholas Bloom & Tarek Alexander Hassan & Aakash Kalyani & Josh Lerner & Ahmed Tahoun, 2021. "The diffusion of disruptive technologies," CEP Discussion Papers dp1798, Centre for Economic Performance, LSE.
    3. Colin Wessendorf & Alexander Kopka & Dirk Fornahl, 2021. "The impact of the six European Key Enabling Technologies (KETs) on regional knowledge creation," Papers in Evolutionary Economic Geography (PEEG) 2127, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Sep 2021.
    4. Oliver Falck & Johannes Koenen, 2020. "Rohstoff „Daten“: Volkswirtschaflicher Nutzen von Datenbereitstellung – eine Bestandsaufnahme," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 113, July.
    5. Christian Rammer & Gastón P Fernández & Dirk Czarnitzki, 2021. "Artificial Intelligence and Industrial Innovation: Evidence from Firm-Level Data," Working Papers of Department of Economics, Leuven 674605, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    8. DUERNECKER Georg & SANCHEZ MARTINEZ Miguel, 2021. "Structural change and productivity growth in the European Union: Past, present and future," JRC Working Papers on Territorial Modelling and Analysis 2021-09, Joint Research Centre.
    9. Ekaterina Prytkova, 2021. "ICT's Wide Web: a System-Level Analysis of ICT's Industrial Diffusion with Algorithmic Links," Jena Economics Research Papers 2021-005, Friedrich-Schiller-University Jena.
    10. Xiangyi Li & Qing Wang & Ying Tang, 2024. "The Impact of Artificial Intelligence Development on Urban Energy Efficiency—Based on the Perspective of Smart City Policy," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    11. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    12. Ajay Agrawal & Joshua Gans & Avi Goldfarb & Catherine Tucker, 2023. "Introduction to "The Economics of Artificial Intelligence: Health Care Challenges"," NBER Chapters, in: The Economics of Artificial Intelligence: Health Care Challenges, pages 1-7, National Bureau of Economic Research, Inc.
    13. Cao, Sean & Jiang, Wei & Wang, Junbo & Yang, Baozhong, 2024. "From Man vs. Machine to Man + Machine: The art and AI of stock analyses," Journal of Financial Economics, Elsevier, vol. 160(C).
    14. Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
    15. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    16. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    17. Mert Demirer & Diego Jimenez-Hernandez & Dean Li & Sida Peng, 2024. "Data, Privacy Laws and Firm Production: Evidence from the GDPR," Working Paper Series WP 2024-02, Federal Reserve Bank of Chicago.
    18. Wang, Li & Wu, Yuhan & Huang, Zeyu & Wang, Yanan, 2024. "Big data application and corporate investment decisions: Evidence from A-share listed companies in China," International Review of Financial Analysis, Elsevier, vol. 94(C).
    19. Vasiliki Koniakou, 2023. "From the “rush to ethics” to the “race for governance” in Artificial Intelligence," Information Systems Frontiers, Springer, vol. 25(1), pages 71-102, February.
    20. Andrea Szalavetz, 2019. "Artificial Intelligence-Based Development Strategy in Dependent Market Economies - Any Room amidst Big Power Rivalry?," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 40-54.

    More about this item

    Keywords

    artificial intelligence; generative AI; inflation; output; productivity; monetary policy;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:biswps:1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.