IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3200-d1373833.html
   My bibliography  Save this article

The Impact of Artificial Intelligence Development on Urban Energy Efficiency—Based on the Perspective of Smart City Policy

Author

Listed:
  • Xiangyi Li

    (Hubei Recycling Economy Development Research Center, Hubei University of Technology, Wuhan 430068, China)

  • Qing Wang

    (Hubei Recycling Economy Development Research Center, Hubei University of Technology, Wuhan 430068, China)

  • Ying Tang

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

Abstract

China’s economy is stepping into a new stage of high-quality development. The shift not only marks the optimization and upgrading of the economic structure, but also reflects the in-depth implementation of the concept of sustainable development. In this context, the development of AI technology is playing an important role in balancing economic growth and ecological protection with its unique advantages. This paper empirically studied the impact of AI development on urban energy efficiency by constructing panel data for 282 prefecture-level cities from 2006 to 2019 and then using the super-efficiency SBM model based on non-expected outputs to evaluate the urban energy efficiency indicators of prefecture-level cities. It was discovered that the development of AI had a key influence on increasing urban energy efficiency and the optimization of the energy structure by speeding up green technology innovation and digital economy development, which in turn improved urban energy efficiency. In terms of heterogeneity analysis, AI development had a greater impact on urban energy efficiency in the eastern region, which has higher levels of human capital, financial independence, and government intervention. This study combined the smart city pilot policy with a multi-period DID model, based on the treatment of endogeneity issues, in order to perform a parallel trend test and investigate further the effects of policy implementation on the advancement of AI in the context of improving urban energy efficiency. Accordingly, to achieve green and sustainable urban development, the relevant government departments should increase funding for AI research and development, pay attention to the introduction and cultivation of professionals, establish a platform for international exchanges and cooperation between AI and energy management, and continue to advocate for the pilot development of smart cities to increase urban energy efficiency.

Suggested Citation

  • Xiangyi Li & Qing Wang & Ying Tang, 2024. "The Impact of Artificial Intelligence Development on Urban Energy Efficiency—Based on the Perspective of Smart City Policy," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3200-:d:1373833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    3. Babina, Tania & Fedyk, Anastassia & He, Alex & Hodson, James, 2024. "Artificial intelligence, firm growth, and product innovation," Journal of Financial Economics, Elsevier, vol. 151(C).
    4. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    5. Li, Juan & Ma, Shaoqi & Qu, Yi & Wang, Jiamin, 2023. "The impact of artificial intelligence on firms’ energy and resource efficiency: Empirical evidence from China," Resources Policy, Elsevier, vol. 82(C).
    6. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Becchi & Elisa Belloni & Marco Bindi & Matteo Intravaia & Francesco Grasso & Gabriele Maria Lozito & Maria Cristina Piccirilli, 2024. "A Computationally Efficient Rule-Based Scheduling Algorithm for Battery Energy Storage Systems," Sustainability, MDPI, vol. 16(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jing & Xiao, Qinglan & Wang, Taoxuan, 2023. "Does the digital economy generate a gender dividend for female employment? Evidence from China," Telecommunications Policy, Elsevier, vol. 47(6).
    2. Andreas Irmen, 2021. "Automation, growth, and factor shares in the era of population aging," Journal of Economic Growth, Springer, vol. 26(4), pages 415-453, December.
    3. Zhu, Jun & Zhang, Jingting & Feng, Yiqing, 2022. "Hard budget constraints and artificial intelligence technology," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    4. Ana L. ABELIANSKY & Eda ALGUR & David E. BLOOM & Klaus PRETTNER, 2020. "The future of work: Meeting the global challenges of demographic change and automation," International Labour Review, International Labour Organization, vol. 159(3), pages 285-306, September.
    5. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.
    6. Yining Zhang & Zhong Wu, 2021. "Intelligence and Green Total Factor Productivity Based on China’s Province-Level Manufacturing Data," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    7. Cheng, Can & Luo, Jiayu & Zhu, Chun & Zhang, Shangfeng, 2024. "Artificial intelligence and the skill premium: A numerical analysis of theoretical models," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    8. Dou, Bin & Guo, SongLin & Chang, XiaoChen & Wang, Yong, 2023. "Corporate digital transformation and labor structure upgrading," International Review of Financial Analysis, Elsevier, vol. 90(C).
    9. Hamid Etemad, 2024. "Transformative potentials of generative artificial intelligence: Should international entrepreneurial enterprises adopt GEN.AI?," Journal of International Entrepreneurship, Springer, vol. 22(2), pages 141-163, June.
    10. Lei Wang & Provash Sarker & Kausar Alam & Shahneoaj Sumon, 2021. "Artificial Intelligence and Economic Growth: A Theoretical Framework," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 68(4), pages 421-443, November.
    11. Xueyuan Gao & Hua Feng, 2023. "AI-Driven Productivity Gains: Artificial Intelligence and Firm Productivity," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    12. Alekseeva, Liudmila & Azar, José & Giné, Mireia & Samila, Sampsa & Taska, Bledi, 2021. "The demand for AI skills in the labor market," Labour Economics, Elsevier, vol. 71(C).
    13. Li, Jianqiang & Shan, Yaowen & Tian, Gary & Hao, Xiangchao, 2020. "Labor cost, government intervention, and corporate innovation: Evidence from China," Journal of Corporate Finance, Elsevier, vol. 64(C).
    14. Pang, Ziyun, 2022. "A Note on Economic Growth and Labor Automation," MPRA Paper 112457, University Library of Munich, Germany.
    15. Wang, Jiancheng & Chen, Jialing & Li, Xiaoying & Li, Weiping, 2024. "Broadband acceleration and employment: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    16. Wang, Linhui & Cao, Zhanglu & Dong, Zhiqing, 2023. "Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 342-356.
    17. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    18. Shimizu, Ryosuke & Momoda, Shohei, 2023. "Does automation technology increase wage?," Journal of Macroeconomics, Elsevier, vol. 77(C).
    19. Maria-Chiara Morandini & Anna Thum-Thysen & Anneleen Vandeplas, 2020. "Facing the Digital Transformation: Are Digital Skills Enough?," European Economy - Economic Briefs 054, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    20. Azar, José & Alekseeva, Liudmila & Gine, Mireia & Samila, Sampsa & Taska, Bledi, 2020. "The Demand for AI Skills in the Labor Market," CEPR Discussion Papers 14320, C.E.P.R. Discussion Papers.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3200-:d:1373833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.