IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/1115.html
   My bibliography  Save this paper

Almost Mutually Best in Matching Markets: Rank-Fairness and Size of the Core

Author

Listed:
  • Christopher Kah
  • Flip Klijn
  • Markus Walzl

Abstract

This paper studies the one-to-one two-sided marriage model (Gale and Shapley, 1962). If agents' preferences exhibit mutually best, there is a unique stable matching that is trivially rank-fair (i.e., in each matched pair the agents assign one another the same rank). We study in how far this result is robust for matching markets that are "close" to mutually best. Without a restriction on preference profiles, we find that natural "distances" to mutually best neither bound the size of the core nor the rank-unfairness of stable matchings. However, for matching markets that satisfy horizontal heterogeneity, "local" distances to mutually best provide bounds for the size of the core and the rank- unfairness of stable matchings.

Suggested Citation

  • Christopher Kah & Flip Klijn & Markus Walzl, 2019. "Almost Mutually Best in Matching Markets: Rank-Fairness and Size of the Core," Working Papers 1115, Barcelona School of Economics.
  • Handle: RePEc:bge:wpaper:1115
    as

    Download full text from publisher

    File URL: https://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/1115.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holzman, Ron & Samet, Dov, 2014. "Matching of like rank and the size of the core in the marriage problem," Games and Economic Behavior, Elsevier, vol. 88(C), pages 277-285.
    2. Paula Jaramillo & Çaǧatay Kayı & Flip Klijn, 2019. "The core of roommate problems: size and rank-fairness within matched pairs," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(1), pages 157-179, March.
    3. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    4. Clark Simon, 2006. "The Uniqueness of Stable Matchings," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 6(1), pages 1-30, December.
    5. Ken Burdett & Randall Wright, 1998. "Two-Sided Search with Nontransferable Utility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(1), pages 220-245, January.
    6. Kiyotaki, Nobuhiro & Wright, Randall, 1989. "On Money as a Medium of Exchange," Journal of Political Economy, University of Chicago Press, vol. 97(4), pages 927-954, August.
    7. Eeckhout, Jan, 2000. "On the uniqueness of stable marriage matchings," Economics Letters, Elsevier, vol. 69(1), pages 1-8, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flip Klijn & Markus Walzl & Christopher Kah, 2021. "Almost mutually best in matching markets: rank gaps and size of the core," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(4), pages 797-816, November.
    2. Ortega, Josué, 2018. "Social integration in two-sided matching markets," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 119-126.
    3. Marcelo Ariel Fernandez & Kirill Rudov & Leeat Yariv, 2022. "Centralized Matching with Incomplete Information," American Economic Review: Insights, American Economic Association, vol. 4(1), pages 18-33, March.
    4. Karpov, Alexander, 2019. "A necessary and sufficient condition for uniqueness consistency in the stable marriage matching problem," Economics Letters, Elsevier, vol. 178(C), pages 63-65.
    5. Lauermann, Stephan & Nöldeke, Georg, 2014. "Stable marriages and search frictions," Journal of Economic Theory, Elsevier, vol. 151(C), pages 163-195.
    6. Gregory Z. Gutin & Philip R. Neary & Anders Yeo, 2021. "Unique Stable Matchings," Papers 2106.12977, arXiv.org, revised Jul 2023.
    7. Klumpp, Tilman, 2009. "Two-sided matching with spatially differentiated agents," Journal of Mathematical Economics, Elsevier, vol. 45(5-6), pages 376-390, May.
    8. Akahoshi, Takashi, 2014. "Singleton core in many-to-one matching problems," Mathematical Social Sciences, Elsevier, vol. 72(C), pages 7-13.
    9. Vincent Iehlé & Julien Jacqmin, 2023. "SIGEM : analyse de la procédure d’affectation dans les grandes écoles de management," Revue économique, Presses de Sciences-Po, vol. 74(2), pages 139-168.
    10. Sang-Chul Suh & Quan Wen, 2006. "The Eeckhout Condition and the Subgame Perfect Implementation of Stable Matching," 2006 Meeting Papers 176, Society for Economic Dynamics.
    11. Bilancini, Ennio & Boncinelli, Leonardo, 2014. "Instrumental cardinal concerns for social status in two-sided matching with non-transferable utility," European Economic Review, Elsevier, vol. 67(C), pages 174-189.
    12. Rocheteau, Guillaume & Wright, Randall, 2013. "Liquidity and asset-market dynamics," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 275-294.
    13. Cho, In-Koo & Matsui, Akihiko, 2013. "Search theory, competitive equilibrium, and the Nash bargaining solution," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1659-1688.
    14. Salonen, Hannu & Salonen, Mikko A.A., 2018. "Mutually best matches," Mathematical Social Sciences, Elsevier, vol. 91(C), pages 42-50.
    15. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Frederic Vermeulen, 2017. "Household Consumption When the Marriage Is Stable," American Economic Review, American Economic Association, vol. 107(6), pages 1507-1534, June.
    16. Philip J. Reny, 2021. "A simple sufficient condition for a unique and student-efficient stable matching in the college admissions problem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(1), pages 7-9, April.
    17. Vinay Ramani & K. S. Mallikarjuna Rao, 2018. "Paths to stability and uniqueness in two-sided matching markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1137-1150, November.
    18. Patrick Legros & Andrew F. Newman, 2007. "Beauty Is a Beast, Frog Is a Prince: Assortative Matching with Nontransferabilities," Econometrica, Econometric Society, vol. 75(4), pages 1073-1102, July.
    19. Estelle Cantillon & Li Chen & Juan Sebastian Pereyra Barreiro, 2022. "Respecting priorities versus respecting preferences in school choice: When is there a trade-off ?," Working Papers ECARES 2022-39, ULB -- Universite Libre de Bruxelles.
    20. Elin Colmsjoe, 2024. "A Flying Start: The Long-Run Effects of Inter Vivos Transfers," CEBI working paper series 24-02, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).

    More about this item

    Keywords

    matching; mutually best; horizontal heterogeneity; stable matching; core; rank-fairness;
    All these keywords.

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:1115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.