IDEAS home Printed from https://ideas.repec.org/p/bei/00bewp/0043.html
   My bibliography  Save this paper

Risks and incentives for gaming in electricity redispatch markets

Author

Listed:
  • Anna Pechan
  • Christine Brandstätt
  • Gert Brunekreeft
  • Martin Palovic

Abstract

Market design for electricity often ignores network congestion initially and addresses it in a second, so-called 'redispatch' stage. For market participants, any two-stage design offers an opportunity to strategically optimize between the different market stages. The current debate is how to design a market-based redispatch to integrate new actors, in particular consumers, given increasing levels of congestion. Strategic bidding may occur if market players anticipate congestion in their region and manipulate bidding to exploit this congestion. In this paper, we pick up the current debate and study the precise incentives for gaming with respect to competitive conditions on the market with a formal model. We propose that depending on competitive conditions, the expected profits of gaming can be negative and link the range of negative expected gaming profits to a so-called reference bidder, reflecting competitive conditions in the market. We also discuss how several potential remedies can increase the risk of the gaming strategy and can thereby reduce the practical potential for gaming. With this paper, we provide the theoretical framework for authorities and empirical works to assess the potential of market-based as opposed to administrative redispatch.

Suggested Citation

  • Anna Pechan & Christine Brandstätt & Gert Brunekreeft & Martin Palovic, "undated". "Risks and incentives for gaming in electricity redispatch markets," Bremen Energy Working Papers 0043, Bremen Energy Research.
  • Handle: RePEc:bei:00bewp:0043
    as

    Download full text from publisher

    File URL: https://bremen-energy-research.de/wp-content/bewp/bewp43.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Severin Borenstein & James Bushnell & Christopher R. Knittel & Catherine Wolfram, 2008. "Inefficiencies And Market Power In Financial Arbitrage: A Study Of California'S Electricity Markets," Journal of Industrial Economics, Wiley Blackwell, vol. 56(2), pages 347-378, June.
    2. Natalia Fabra & Nils‐Henrik Fehr & David Harbord, 2006. "Designing electricity auctions," RAND Journal of Economics, RAND Corporation, vol. 37(1), pages 23-46, March.
    3. Federico, Giulio & Rahman, David, 2003. "Bidding in an Electricity Pay-as-Bid Auction," Journal of Regulatory Economics, Springer, vol. 24(2), pages 175-211, September.
    4. Hirth, Lion & Schlecht, Ingmar, 2020. "Market-Based Redispatch in Zonal Electricity Markets: The Preconditions for and Consequence of Inc-Dec Gaming," EconStor Preprints 194292, ZBW - Leibniz Information Centre for Economics, revised 2020.
    5. Sarfati, Mahir & Hesamzadeh, Mohammed Reza & Holmberg, Pär, 2019. "Production Efficiency of Nodal and Zonal Pricing in Imperfectly Competitive Electricity Markets," Working Paper Series 1264, Research Institute of Industrial Economics.
    6. Koichiro Ito & Mar Reguant, 2016. "Sequential Markets, Market Power, and Arbitrage," American Economic Review, American Economic Association, vol. 106(7), pages 1921-1957, July.
    7. Alfred E. Kahn & Peter Cramton & Robert H. Porter & Richard D. Tabors, 2001. "Pricing in the California Power Exchange Electricity Market: Should California Switch from Uniform Pricing to Pay-as-Bid Pricing?," Papers of Peter Cramton 01calpx, University of Maryland, Department of Economics - Peter Cramton, revised 27 Jan 2001.
    8. Natalia Fabra & Nils-Henrik M. von der Fehr & David Harbord, 2006. "Designing Electricity Auctions," RAND Journal of Economics, The RAND Corporation, vol. 37(1), pages 23-46, Spring.
    9. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    10. Swider, Derk J. & Weber, Christoph, 2007. "Bidding under price uncertainty in multi-unit pay-as-bid procurement auctions for power systems reserve," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1297-1308, September.
    11. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    13. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Georgios & Willems, Bert, 2020. "Long-term transmission rights and dynamic efficiency," Energy Economics, Elsevier, vol. 88(C).
    2. Ghaninejad, Mousa, 2020. "عرضه، تقاضا، و پیشنهاد قیمت در بازار برق ایران [Supply, Demand, and Bidding in Iran’s Electricity Market]," MPRA Paper 105340, University Library of Munich, Germany.
    3. Just, Sebastian & Weber, Christoph, 2008. "Pricing of reserves: Valuing system reserve capacity against spot prices in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3198-3221, November.
    4. Blázquez de Paz, Mario, 2019. "Redispatch in Zonal Pricing Electricity Markets," Working Paper Series 1278, Research Institute of Industrial Economics.
    5. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).
    6. Blázquez de Paz, Mario, 2018. "Electricity auctions in the presence of transmission constraints and transmission costs," Energy Economics, Elsevier, vol. 74(C), pages 605-627.
    7. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    8. T. S. Genc, 2009. "Discriminatory Versus Uniform-Price Electricity Auctions with Supply Function Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 9-31, January.
    9. Dejan Trifunović & Bojan Ristić, 2013. "Multi-Unit Auctions In The Procurement Of Electricity," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 58(197), pages 47-78, April – J.
    10. Willems, Bert & Pollitt, Michael & von der Fehr, Nils-Henrik & Banet, Catherine, 2022. "The European Wholesale Electricty Market: From Crisis to Net Zero," Other publications TiSEM 2f225964-853e-4d30-a46d-0, Tilburg University, School of Economics and Management.
    11. Pär Holmberg, 2009. "Supply function equilibria of pay-as-bid auctions," Journal of Regulatory Economics, Springer, vol. 36(2), pages 154-177, October.
    12. Eicke, Anselm & Schittekatte, Tim, 2022. "Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate," Energy Policy, Elsevier, vol. 170(C).
    13. Holmberg, Pär & Newbery, David, 2010. "The supply function equilibrium and its policy implications for wholesale electricity auctions," Utilities Policy, Elsevier, vol. 18(4), pages 209-226, December.
    14. Holmberg, Pär & Tangerås, Thomas & Ahlqvist, Victor, 2018. "Central- versus Self-Dispatch in Electricity Markets," Working Paper Series 1257, Research Institute of Industrial Economics, revised 27 Mar 2019.
    15. Estrella Alonso & Juan Tejada, 2010. "Equivalencia de Ingresos en un Duopolio Eléctrico," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 47(136), pages 191-215.
    16. Bunn, Derek & Koc, Veli & Sapio, Alessandro, 2015. "Resource externalities and the persistence of heterogeneous pricing behavior in an energy commodity market," Energy Economics, Elsevier, vol. 48(C), pages 265-275.
    17. Höckner, Jonas & Voswinkel, Simon & Weber, Christoph, 2020. "Market distortions in flexibility markets caused by renewable subsidies – The case for side payments," Energy Policy, Elsevier, vol. 137(C).
    18. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    19. Bohland, Moritz & Schwenen, Sebastian, 2022. "Renewable support and strategic pricing in electricity markets," International Journal of Industrial Organization, Elsevier, vol. 80(C).
    20. Chloé Le Coq & Sebastian Schwenen, 2020. "Financial contracts as coordination device," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 29(2), pages 241-259, April.

    More about this item

    Keywords

    Electricity market; Market-based redispatch; Strategic behaviour; Inc-Dec gaming; congestion management;
    All these keywords.

    JEL classification:

    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bei:00bewp:0043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Pechan (email available below). General contact details of provider: http://bremen-energy-research.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.