IDEAS home Printed from https://ideas.repec.org/p/bea/wpaper/0194.html
   My bibliography  Save this paper

Banff or Simputation? Assessing Alternative Approaches to the Imputation of Missing and Erroneous Data on BEA’s Multinational Enterprise Surveys

Author

Listed:
  • Larkin Terrie

    (Bureau of Economic Analysis)

Abstract

BEA employs automated data editing and imputation systems to process a subset of its multinational enterprise (MNE) surveys. Until recently, all of the auto-editing systems used at BEA were built around the Banff system for data editing and imputation produced by Statistics Canada, which runs in SAS. To enhance BEA’s flexibility, BEA researchers have explored the feasibility of creating auto-editing systems built around software other than Banff, focusing in particular on a set of R packages created by researchers at Statistics Netherlands. Since previous research has established that Banff produces highly accurate imputations on BEA’s MNE surveys, a key question is whether these R packages produce imputations that are as accurate as those produced by Banff. Among these R packages, the Simputation package is responsible for almost all of the imputation functionality. This project employs a simulation-based approach to assess the relative accuracy of the imputations produced by Banff and Simputation, using data collected by two different MNE survey instruments. The simulation results indicate that Simputation is sufficiently accurate to make the Statistics Netherlands R packages a viable alternative to Banff. However, the results differ by survey instrument, suggesting that Simputation might produce more accurate imputations when the instrument collects relatively few data items and that Banff might be more accurate for forms that are longer and more complex.

Suggested Citation

  • Larkin Terrie, 2022. "Banff or Simputation? Assessing Alternative Approaches to the Imputation of Missing and Erroneous Data on BEA’s Multinational Enterprise Surveys," BEA Working Papers 0194, Bureau of Economic Analysis.
  • Handle: RePEc:bea:wpaper:0194
    as

    Download full text from publisher

    File URL: https://www.bea.gov/system/files/papers/BEA-WP2022-3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    2. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    3. Larkin Terrie, 2018. "Assessing the Automated Imputation of Missing and Erroneous Survey Data: A Simulation-Based Approach," BEA Papers 0108, Bureau of Economic Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
    8. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    9. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    10. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
    11. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    12. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    13. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    14. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
    15. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    16. Ardyn Nordstrom, 2021. "Can Interventions Targeting Community Attitudes Improve Education for Marginalized Students? Evidence from a Mixed-Methods Experimental Design in Zimbabwe," Working Paper 1472, Economics Department, Queen's University.
    17. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    18. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    19. Luis Fernando Melo-Velandia & Juan J. Ospina-Tejeiro & Julian A. Parra-Polania, 2020. "Effects of Banco de la Republica’s Communication on the Yield Curve," Borradores de Economia 1137, Banco de la Republica de Colombia.
    20. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.

    More about this item

    JEL classification:

    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • F23 - International Economics - - International Factor Movements and International Business - - - Multinational Firms; International Business

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bea:wpaper:0194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Batch (email available below). General contact details of provider: https://edirc.repec.org/data/beagvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.