IDEAS home Printed from https://ideas.repec.org/p/bcl/bclwop/bclwp162.html
   My bibliography  Save this paper

Why you should never use the Hodrick-Prescott Filter: Comment

Author

Listed:
  • Alban Moura

Abstract

Hamilton (2018) argues that one should never use the Hodrick-Prescott (HP) filter, given its drawbacks and the existence of a better alternative. This comment shows that the main drawback Hamilton finds in the HP filter, the presence of filter-induced dynamics in the estimate of the cyclical component, is also a key feature of the alternative filter proposed by Hamilton. As with the HP filter, the Hamilton filter applied to a random walk extracts a cyclical component that is highly predictable, that can predict other variables, and whose properties reflect as much the filter as the underlying data-generating process. In addition, the Hamilton trend lags the data by construction and there is some arbitrariness in the choice of a key parameter defining the filter. Therefore, a more balanced assessment is that the HP and Hamilton filters provide different ways to look at the data, with neither being clearly superior from a practical perspective.

Suggested Citation

  • Alban Moura, 2022. "Why you should never use the Hodrick-Prescott Filter: Comment," BCL working papers 162, Central Bank of Luxembourg.
  • Handle: RePEc:bcl:bclwop:bclwp162
    as

    Download full text from publisher

    File URL: https://www.bcl.lu/en/publications/Working-papers/162/BCLWP162.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stock, James H. & Watson, Mark W., 1999. "Business cycle fluctuations in us macroeconomic time series," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64, Elsevier.
    2. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    3. Harvey, Andrew C. & Trimbur, Thomas M. & Van Dijk, Herman K., 2007. "Trends and cycles in economic time series: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 618-649, October.
    4. Alejandro Justiniano & Giorgio E. Primiceri & Andrea Tambalotti, 2013. "Is There a Trade-Off between Inflation and Output Stabilization?," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 1-31, April.
    5. Burnside, Craig, 1998. "Detrending and business cycle facts: A comment," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 513-532, May.
    6. Canova, Fabio, 1998. "Detrending and business cycle facts: A user's guide," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 533-540, May.
    7. Canova, Fabio, 1998. "Detrending and business cycle facts," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 475-512, May.
    8. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    9. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    10. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    11. George-Marios Angeletos & Fabrice Collard & Harris Dellas, 2020. "Business-Cycle Anatomy," American Economic Review, American Economic Association, vol. 110(10), pages 3030-3070, October.
    12. Andrew C. Harvey & Thomas M. Trimbur, 2003. "General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 244-255, May.
    13. Christiano, Lawrence J. & Trabandt, Mathias & Walentin, Karl, 2010. "DSGE Models for Monetary Policy Analysis," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 7, pages 285-367, Elsevier.
    14. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    15. Edge, Rochelle M. & Kiley, Michael T. & Laforte, Jean-Philippe, 2008. "Natural rate measures in an estimated DSGE model of the U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2512-2535, August.
    16. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    17. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    3. Álvarez, Luis J. & Gómez-Loscos, Ana, 2018. "A menu on output gap estimation methods," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 827-850.
    4. Yves Schueler, 2024. "Filtering economic time series: On the cyclical properties of Hamilton’s regression filter and the Hodrick-Prescott filter," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 54, October.
    5. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    6. Marlon Fritz, 2019. "Data-Driven Local Polynomial Trend Estimation for Economic Data - Steady State Adjusting Trends," Working Papers Dissertations 49, Paderborn University, Faculty of Business Administration and Economics.
    7. Schenk-Hoppé Klaus Reiner, 2001. "Economic Growth and Business Cycles: A Critical Comment on Detrending Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-13, April.
    8. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    9. Angelos VOULDIS & Panayotis MICHAELIDES & John MILIOS, 2008. "Do Technology Shocks affect Output and Profitability over the Business Cycle in Greece (1960-2008)?," EcoMod2008 23800152, EcoMod.
    10. Klaus Reiner Schenk-Hopp�, "undated". "Economic Growth and Business Cycles: A Critical Comment on Detrending Time Series (Revised Version)," IEW - Working Papers 054, Institute for Empirical Research in Economics - University of Zurich.
    11. Aadland, David, 2005. "Detrending time-aggregated data," Economics Letters, Elsevier, vol. 89(3), pages 287-293, December.
    12. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    13. Morley, James & Panovska, Irina B., 2020. "Is Business Cycle Asymmetry Intrinsic In Industrialized Economies?," Macroeconomic Dynamics, Cambridge University Press, vol. 24(6), pages 1403-1436, September.
    14. Movshuk, Oleksandr, 2003. "Does the choice of detrending method matter in demand analysis?," Japan and the World Economy, Elsevier, vol. 15(3), pages 341-359, August.
    15. James Morley, 2014. "Measuring Economic Slack: A Forecast-Based Approach with Applications to Economies in Asia and the Pacific," BIS Working Papers 451, Bank for International Settlements.
    16. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    17. Ghate, Chetan & Pandey, Radhika & Patnaik, Ila, 2013. "Has India emerged? Business cycle stylized facts from a transitioning economy," Structural Change and Economic Dynamics, Elsevier, vol. 24(C), pages 157-172.
    18. Maik H. Wolters, 2018. "How the baby boomers' retirement wave distorts model‐based output gap estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 680-689, August.
    19. Woitek, Ulrich, 2003. "Height cycles in the 18th and 19th centuries," Economics & Human Biology, Elsevier, vol. 1(2), pages 243-257, June.
    20. A'Hearn, Brian & Woitek, Ulrich, 2001. "More international evidence on the historical properties of business cycles," Journal of Monetary Economics, Elsevier, vol. 47(2), pages 321-346, April.

    More about this item

    Keywords

    HP filter; Hamilton filter; business cycles; detrending; filtering.;
    All these keywords.

    JEL classification:

    • B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcl:bclwop:bclwp162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bclgvlu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.